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1. Notations and Assumptions

In the whole document, N () denotes rounding to nearest, Z() rounding toward zero, △()
rounding toward positive infinity, ▽() rounding toward negative infinity, and ◦() any of those
four rounding modes.

In the whole document, except special notice, all variables are assumed to have the same
precision, usually denoted p.

2. Error calculus

Let p — the working precision — be a positive integer (considered fixed in the following).
We write any nonzero real number x in the form x = m·2e with 1

2
≤ |m| < 1 and e := exp(x),

and we define ulp(x) := 2exp(x)−p. Any time a number appears in a ulp, it is implicitly
assumed to be nonzero. Unless specified otherwise, when rounding is involved, one also
assumes that no underflows nor overflows occur.
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2.1. Ulp calculus.

Rule 1. 2−p|x| < ulp(x) ≤ 21−p|x|.

Proof. Obvious from x = m · 2e with 1
2
≤ |m| < 1. □

Rule 2. If a and b have same precision p, and |a| ≤ |b|, then ulp(a) ≤ ulp(b).

Proof. Write a = ma · 2ea and b = mb · 2eb . Then |a| ≤ |b| implies ea ≤ eb, thus ulp(a) =
2ea−p ≤ 2eb−p = ulp(b). □

Rule 3. For any x ̸= 0 and any rounding mode ◦(·), we have ulp(x) ≤ ulp(◦(x)), and
equality holds when rounding toward zero, toward −∞ for x > 0, or toward +∞ for x < 0.

Proof. Without loss of generality, assume x > 0. Since x ∈ [2e−1, 2e[ and both 2e−1 and 2e are
exactly representable, one has ◦(x) ∈ [2e−1, 2e], and in rounding toward zero, ◦(x) ∈ [2e−1, 2e[.
For any x, y ∈ [2e−1, 2e[, one has ulp(x) = ulp(y) = ulp(2e−1) < ulp(2e). QED. □

Rule 4. Let x be a real number, and y = ◦(x). Then |x−y| ≤ 1
2
ulp(x) ≤ 1

2
ulp(y) in rounding

to nearest, and |x− y| ≤ ulp(x) ≤ ulp(y) in the other rounding modes.

Proof. In the binade [2e−1, 2e], the distance between two consecutive machine numbers is
ulp(x). Hence |x− y| ≤ c · ulp(x) with c = 1

2
in rounding to nearest and c = 1 in the other

rounding modes. And ulp(x) ≤ ulp(y) from Rule 3, which completes the proof. □

Rule 5. ulp(2ka) = 2kulp(a).

Proof. Easy: if a = ma · 2ea , then 2ka = ma · 2ea+k. □

Rule 6. 1
2
|a| · ulp(b) < ulp(ab) < 2|a| · ulp(b).

Proof. Let e be the exponent of a, i.e., 2e−1 ≤ |a| < 2e. Then 1
2
|a| · ulp(b) < 1

2
2e · ulp(b) =

ulp(2e−1b) ≤ ulp(ab). The other inequality is actually equivalent: replace a by 1
a
and b by

ab. □

Rule 7. Let x be a nonzero real number, ◦(·) be any rounding, and u := ◦(x). Then
1
2
|u| < |x| < 2|u|.

Proof. Since no underflows nor overflows occur, u is finite and nonzero. Assume |x| ≥ 2|u|.
Then 2u is another representable number, which is closer from x than u, which leads to a
contradiction. The same argument proves 1

2
|u| < |x|. □

Rule 8. 1
2
|a| · ulp(1) < ulp(a) ≤ |a| · ulp(1).

Proof. The left inequality comes from Rule 6 with b = 1, and the right one from |a|ulp(1) ≥
1
2
2ea21−p = ulp(a). □

Rule 9.

For error(u) ≤ kuulp(u), u.c−u ≤ x ≤ u.c+u
with c−u = 1− ku21−p and c+u = 1 + ku2

1−p
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For u = ◦(x), u.c−u ≤ x ≤ u.c+u
if u = △(x), then c+u = 1

if u = ▽(x), then c−u = 1

if for x < 0 and u = Z(x), then c+u = 1

if for x > 0 and u = Z(x), then c−u = 1

else c−u = 1− 21−p and c+u = 1 + 21−p

2.2. Relative error analysis. Another way to get a bound on the error, is to bound
the relative error. This is sometimes easier than using the “ulp calculus” especially when
performing only multiplications or divisions.

Rule 10. If u := ◦p(x), then we can write both:

u = x(1 + θ1), x = u(1 + θ2),

where |θi| ≤ 2−p for rounding to nearest, and |θi| < 21−p for directed rounding.

Proof. This is a simple consequence of Rule 4. For rounding to nearest, we have |u − x| ≤
1
2
ulp(t) for t = u or t = x, hence by Rule 1 |u− x| ≤ 2−p. □

Rule 11. Assume x1, . . . , xn are n floating-point numbers in precision p, and we compute
an approximation of their product with the following sequence of operations: u1 = x1, u2 =
◦(u1x2), . . . , un = ◦(un−1xn). If rounding away from zero, the total rounding error is bounded
by 2(n− 1)ulp(un).

Proof. We can write u1x2 = u2(1 − θ2), . . . , un−1xn = un(1 − θn), where 0 ≤ θi ≤ 21−p.
We get x1x2 . . . xn = un(1 − θ2) . . . (1 − θn), which we can write un(1 − θ)n−1 for some
0 ≤ θ ≤ 21−p by the intermediate value theorem. Since 1 − nt ≤ (1 − t)n ≤ 1, we get
|x1x2 . . . xn − un| ≤ (n− 1)21−p|un| ≤ 2(n− 1)ulp(un) by Rule 1. □

2.3. Generic error of addition/subtraction. We want to compute the generic error of
the subtraction, the following rules apply to addition too.

Note: error(u) ≤ ku ulp(u), error(v) ≤ kv ulp(v)

Note: ulp(w) = 2ew−p, ulp(u) = 2eu−p, ulp(v) = 2ev−p with p the precision

ulp(u) = 2d+ew−p, ulp(v) = 2d
′
+ew−p, with d = eu − ew d

′
= ev − ew

error(w) ≤ cwulp(w) + kuulp(u) + kvulp(v)

= (cw + ku2
d + kv2

d
′

)ulp(w)

If (u ≥ 0 and v ≥ 0) or (u ≤ 0 and v ≤ 0)

error(w) ≤ (cw + ku + kv) ulp(w)

Note: If w = N (u+ v) then cw =
1

2
else cw = 1
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2.4. Generic error of multiplication. We want to compute the generic error of the mul-
tiplication. We assume here u, v > 0 are approximations of exact values respectively x and
y, with |u− x| ≤ ku ulp(u) and |v − y| ≤ kv ulp(v).

w = ◦(uv)

error(w) = |w − xy|
≤ |w − uv|+ |uv − xy|

≤ cwulp(w) +
1

2
[|uv − uy|+ |uy − xy|+ |uv − xv|+ |xv − xy|]

≤ cwulp(w) +
u+ x

2
kvulp(v) +

v + y

2
kuulp(u)

≤ cwulp(w) +
u(1 + c+u )

2
kvulp(v) +

v(1 + c+v )

2
kuulp(u) [Rule 9]

≤ cwulp(w) + (1 + c+u )kvulp(uv) + (1 + c+v )kuulp(uv) [Rule 6]

≤ [cw + (1 + c+u )kv + (1 + c+v )ku]ulp(w) [Rule 3]

Note: If w = N (uv) then cw =
1

2
else cw = 1

2.5. Generic error of inverse. We want to compute the generic error of the inverse. We
assume u > 0.

w = ◦( 1
u
)

Note: error(u) ≤ ku ulp(u)

error(w) = |w − 1

x
|

≤ |w − 1

u
|+ |1

u
− 1

x
|

≤ cwulp(w) +
1

ux
|u− x|

≤ cwulp(w) +
ku
ux

ulp(u)

Note:
u

cu
≤ x [Rule 7]

for u = ▽(x), cu = 1 else cu = 2

then:
1

x
≤ cu

1

u
5



error(w) ≤ cwulp(w) + cu
ku
u2

ulp(u)

≤ cwulp(w) + 2.cu.kuulp(
u

u2
) [Rule 6]

≤ [cw + 2.cu.ku].ulp(w) [Rule 3]

Note: If w = N (
1

u
) then cw =

1

2
else cw = 1

2.6. Generic error of division. We want to compute the generic error of the division.
Without loss of generality, we assume all variables are positive.

w = ◦(u
v
)

Note: error(u) ≤ ku ulp(u), error(v) ≤ kv ulp(v)

error(w) = |w − x

y
|

≤ |w − u

v
|+ |u

v
− x

y
|

≤ cwulp(w) +
1

vy
|uy − vx|

≤ cwulp(w) +
1

vy
[|uy − xy|+ |xy − vx|]

≤ cwulp(w) +
1

vy
[ykuulp(u) + xkvulp(v)]

= cwulp(w) +
ku
v
ulp(u) +

kvx

vy
ulp(v)

Note:
ulp(u)

v
≤ 2ulp(

u

v
) [Rule 6]

2ulp(
u

v
) ≤ 2ulp(w) [Rule 3]

Note: x ≤ cuu and
v

cv
≤ y [Rule 7]

with for u = △(x), cu = 1 else cu = 2

and for v = ▽(y), cv = 1 else cv = 2

then:
x

y
≤ cucv

u

v

error(w) ≤ cwulp(w) + 2.kuulp(w) + cu.cv.
kvu

vv
ulp(v)

≤ cwulp(w) + 2.kuulp(w) + 2.cu.cv.kvulp(
u.v

v.v
) [Rule 6]

≤ [cw + 2.ku + 2.cu.cv.kv].ulp(w) [Rule 3]
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Note: If w = N (
u

v
) then cw =

1

2
else cw = 1

Note that we can obtain a slightly different result by writing uy−vx = (uy−uv)+(uv−vx)
instead of (uy − xy) + (xy − vx).
Another result can be obtained using a relative error analysis. Assume x = u(1 + θu) and

y = v(1+ θv). Then |uv −
x
y
| ≤ 1

vy
|uy−uv|+ 1

vy
|uv−xv| = u

y
(|θu|+ |θv|). If v ≤ y and u

v
≤ w,

this is bounded by w(|θu|+ |θv|).

2.7. Generic error of square root. We want to compute the generic error of the square
root of a floating-point number u, itself an approximation to a real x, with |u−x| ≤ kuulp(u).
If v = ◦(

√
u), then:

error(v) := |v −
√
x| ≤ |v −

√
u|+ |

√
u−
√
x|

≤ cvulp(v) +
1√

u+
√
x
|u− x|

≤ cvulp(v) +
1√

u+
√
x
kuulp(u)

Since by Rule 9 we have u.c−u ≤ x, it follows 1√
x+

√
u
≤ 1

√
u.(1+
√

c−u )
:

error(v) ≤ cvulp(v) +
1

√
u.(1 +

√
c−u )

kuulp(u)

≤ cvulp(v) +
2

1 +
√
c−u
kuulp(

√
u) [Rule 6]

≤ (cv +
2ku

1 +
√
c−u

)ulp(v). [Rule 3]

If u is less than x, we have c−u = 1 and we get the simpler formula |v−
√
x| ≤ (cv+ku)ulp(v).

2.8. Generic error of the exponential. We want to compute the generic error of the
exponential.

v = ◦(eu)
Note: error(u) ≤ ku ulp(u)

error(v) = |v − ex|
≤ |v − eu|+ |eu − ex|
≤ cvulp(v) + et|u− x| with Rolle’s theorem, for t ∈ [x, u] or t ∈ [u, x]

error(v) ≤ cvulp(v) + c∗ue
ukuulp(u)

≤ cvulp(v) + 2c∗uukuulp(e
u) [Rule 6]

≤ (cv + 2c∗uuku)ulp(v) [Rule 3]

≤ (cv + c∗u2
exp(u)+1ku)ulp(v)
7



Note: u = mu2
eu and ulp(u) = 2eu−p with p the precision

Case x ≤ u c∗u = 1

Case u ≤ x

x ≤ u+ kuulp(u)

ex ≤ euekuulp(u)

ex ≤ eueku2
eu−p

then c∗u = eku2
exp(u)−p

2.9. Generic error of the logarithm. Assume x and u are positive values, with |u−x| ≤
kuulp(u). We additionally assume u ≤ 4x. Let v = ◦(log u).

error(v) = |v − log x| ≤ |v − log u|+ | log u− log x|

≤ cvulp(v) + | log
x

u
| ≤ cvulp(v) + 2

|x− u|
u

≤ cvulp(v) +
2ku ulp(u)

u
≤ cvulp(v) + 2ku ulp(1) [Rule 8]

≤ cvulp(v) + 2ku 2
1−evulp(v) ≤ (cv + ku2

2−ev)ulp(v).

We used at line 2 the inequality | log t| ≤ 2|t − 1| which holds for t ≥ ρ, where ρ ≈ 0.203
satisfies log ρ = 2(ρ − 1). At line 4, ev stands for the exponent of v, i.e, v = m · 2ev with
1/2 ≤ |m| < 1.

2.10. Ulp calculus vs relative error. The error in ulp (ulp-error) and the relative error
are related as follows.

Let p be the working precision. Consider u = ◦(x), then the error on u is at most
ulp(u) = 2exp(u)−p ≤ |u| · 21−p, thus the relative error is ≤ 21−p.

Respectively, if the relative error is ≤ δ, then the error is at most δ|u| ≤ δ2pulp(u). (Going
from the ulp-error to the relative error and back, we lose a factor of two.)

It is sometimes more convenient to use the relative error instead of the error in ulp (ulp-
error), in particular when only multiplications or divisions are made. In that case, Higham
[13] proposes the following framework: we associate to each variable the cumulated number
k of roundings that were made. The ith rounding introduces a relative error of δi, with
|δi| ≤ 21−p, i.e. the computed result is 1 + δi times the exact result. Hence k successive
roundings give a error factor of (1 + δ1)(1 + δ2) · · · (1 + δk), which is between (1 − ε)k and
(1 + ε)k with ε = 21−p. In particular, if all roundings are away, the final relative error is at
most kε = k · 21−p, thus at most 2k ulps.

Lemma 1. If a value is computed by k successive multiplications or divisions, each with
rounding away from zero, and precision p, then the final error is bounded by 2k ulps.

If the rounding are not away from zero, the following lemma is still useful [13, Lemma
3.1]:

Lemma 2. Let δ1, . . . , δn be n real values such that |δi| ≤ ϵ, for nϵ < 1. Then we can write∏n
i=1(1 + δi) = 1 + θ with

|θ| ≤ nϵ

1− nϵ
.
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The same holds if some terms 1 + δi are replaced by 1/(1 + δi).

Proof. The maximum values of θ are obtained when all the δi are ϵ, or all are −ϵ, thus it
suffices to prove

(1 + ϵ)n ≤ 1 +
nϵ

1− nϵ
=

1

1− nϵ
and (1− ϵ)n ≥ 1− nϵ

1− nϵ
=

1− 2nϵ

1− nϵ
.

For the first inequality, we have (1 + ϵ)n = en log(1+ϵ), and since log(1 + x) ≤ x, it follows

(1 + ϵ)n ≤ enϵ =
∑

k≥0
(nϵ)k

k!
≤
∑

k≥0(nϵ)
k = 1

1−nϵ
.

For the second inequality, we first prove by induction that (1 − ϵ)n ≥ 1 − nϵ for integer
n ≥ 0. It follows (1− ϵ)n(1− nϵ) ≥ (1− nϵ)2 ≥ 1− 2nϵ, which concludes the proof.
Now assume some of the terms 1 + δ are replaced by 1/(1 + δ). The worst case is when

1/(1 + δ) = 1/(1− ϵ) or 1/(1 + ϵ). If 1/(1 + δ) = 1/(1 + ϵ), we can write 1/(1 + δ) = 1− δ′
with |δ′| = ϵ/(1+ ϵ) < ϵ, thus this is covered by the previous proof. If 1/(1+ δ) = 1/(1− ϵ),
it suffices to prove that 1/(1− ϵ)n ≤ 1/(1−nϵ), i.e., that (1− ϵ)n ≥ 1−nϵ, which is true. □

3. Low level functions

3.1. The mpfr add function.

mpfr_add (A, B, C, rnd)

/* on suppose B et C de me^me signe, et EXP(B) >= EXP(C) */

0. d = EXP(B) - EXP(C) /* d >= 0 par hypothe‘se */

1. Soient B1 les prec(A) premiers bits de B, et B0 le reste

C1 les bits de C correspondant a‘ B1, C0 le reste

/* B0, C1, C0 peuvent e^tre vides, mais pas B1 */

<----------- A ---------->

<----------- B1 ---------><------ B0 ----->

<---------- C1 -------><------------ C0 ----------->

2. A <- B1 + (C1 >> d)

3. q <- compute_carry (B0, C0, rnd)

4. A <- A + q

3.2. The mpfr cmp2 function. This function computes the exponent shift when subtracting
c > 0 from b ≥ c. In other terms, if exp(x) := ⌊ log x

log 2
⌋, it returns exp(b)− exp(b− c).

This function admits the following specification in terms of the binary representation of
the mantissa of b and c: if b = u10nr and c = u01ns, where u is the longest common prefix
to b and c, and (r, s) do not start with (0, 1), then mpfr cmp2(b, c) returns |u| + n if r ≥ s,
and |u|+ n+ 1 otherwise, where |u| is the number of bits of u.

As it is not very efficient to compare b and c bit-per-bit, we propose the following algorithm,
which compares b and c word-per-word. Here b[n] represents the nth word from the mantissa
of b, starting from the most significant word b[0], which has its most significant bit set. The
values c[n] represent the words of c, after a possible shift if the exponent of c is smaller than
that of b.
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n = 0; res = 0;

while (b[n] == c[n])

n++;

res += GMP_NUMB_BITS;

/* now b[n] > c[n] and the first res bits coincide */

dif = b[n] - c[n];

while (dif == 1)

n++;

dif = (dif << GMP_NUMB_BITS) + b[n] - c[n];

res += GMP_NUMB_BITS;

/* now dif > 1 */

res += GMP_NUMB_BITS - number_of_bits(dif);

if (!is_power_of_two(dif))

return res;

/* otherwise result is res + (low(b) < low(c)) */

do

n++;

while (b[n] == c[n]);

return res + (b[n] < c[n]);

3.3. The mpfr sub function. The algorithm used is as follows, where w denotes the number
of bits per word. We assume that a, b and c denote different variables (if a := b or a := c,
we have first to copy b or c), and that the rounding mode is either N (nearest), Z (toward
zero), or ∞ (away from zero).

Algorithm mpfr sub.
Input: b, c of same sign with b > c > 0, a rounding mode ◦ ∈ {N ,Z,∞}
Side effect: store in a the value of ◦(b− c)
Output: 0 if ◦(b− c) = b− c, 1 if ◦(b− c) > b− c, and −1 if ◦(b− c) < b− c
an← ⌈prec(a)

w
⌉, bn← ⌈prec(b)

w
⌉, cn← ⌈prec(c)

w
⌉

cancel← mpfr cmp2(b, c); diff exp← exp(b)− exp(c)
shiftb ← (−cancel) mod w; cancelb ← (cancel+ shiftb)/w
if shiftb > 0 then b[0 . . . bn] ← mpn rshift(b[0 . . . bn − 1], shiftb);
bn← bn+ 1
shiftc ← (diff exp − cancel) mod w; cancelc ← (cancel + shiftc −
diff exp)/w
if shiftc > 0 then c[0 . . . cn] ← mpn rshift(c[0 . . . cn − 1], shiftc);
cn← cn+ 1
exp(a)← exp(b)− cancel; sign(a)← sign(b)
a[0 . . . an− 1]← b[bn− cancelb − an . . . bn− cancelb − 1]
a[0 . . . an− 1]← a[0 . . . an− 1]− c[cn− cancelc − an . . . cn− cancelc − 1]
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sh← an · w − prec(a); r ← a[0] mod 2sh; a[0]← a[0]− r

where b[i] and c[i] is meant as 0 for negative i, and c[i] is meant as 0 for i ≥ cn (cancelb ≥ 0,
but cancelc may be negative).

The rounding is determined by a left-to-right subtraction of the neglected limb of b and
c, until one is able to determine the correct rounding and the correct ternary value. After
the above algorithm, there are three cases where one cannot conclude:

(1) if sh = 0, since the low part of b− c can have any value between −1 ulp and 1 ulp.
The result might be a− 1, a or a+ 1;

(2) if sh > 0 and r = 2sh−1: the result might be a or a+ 1;
(3) if sh > 0 and r = 0: the result is always a, but we cannot determine the ternary

value.

In those three cases we look at the most significant neglected limbs from b and c until we can
conclude. In case 1 the first limb is special, since it will rule out one of the possible results
a− 1, a or a+1. Up from the second limb, the analysis is invariant. The corresponding tree
is the following:
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3.4. The mpfr mul function. mpfr mul uses two algorithms: if the precision of the operands
is small enough, a plain multiplication using mpn mul is used (there is no error, except in the
final rounding); otherwise it uses mpfr mulhigh n.

In this case, it trunks the two operands to m limbs: 1/2 ≤ b < 1 and 1/2 ≤ c < 1,
b = bh+ bl and c = ch+ cl (B = 232or264). The error comes from:

• Truncation: ≤ bl.ch+ bh.cl + bl.cl ≤ bl + cl ≤ 2B−m

• Mulders: Assuming error(Mulders(n)) ≤ error(mulhigh basecase(n)),

error(mulhigh(n)) ≤ (n− 1)(B − 1)2B−n−2 + · · ·+ 1(B − 1)2B−2n

=
n−1∑
i=1

(n− i)(B − 1)2B−n−1−i = (B − 1)2B−n−1

n−1∑
i=1

B−i

= (b− 1)2B−n−1B
1−n − n+ nB −B

(1−B)2
≤ nB−n.

Total error: ≤ (m+ 2)B−m.

3.5. The mpfr div function. The goals of the code of the mpfr div function include the
fact that the complexity should, while preserving correct rounding, depend on the precision
required on the result rather than on the precision given on the operands.

Let u be the dividend, v the divisor, and p the target precision for the quotient. We denote
by q the real quotient u/v, with infinite precision, and n ≥ p the working precision. The
idea — as in the square root algorithm below — is to use GMP’s integer division: divide
the most 2n or 2n− 1 significant bits from u by the most n significant bits from v will give
a good approximation of the quotient’s integer significand. The main difficulties arise when
u and v have a larger precision than 2n and n respectively, since we have to truncate them.
We distinguish two cases: whether the divisor is truncated or not.

3.5.1. Full divisor. This is the easy case. Write u = u1 + u0 where u0 is the truncated part,
and v = v1. Without loss of generality we can assume that ulp(u1) = ulp(v1) = 1, thus u1
and v1 are integers, and 0 ≤ u0 < 1. Since v1 has n significant bits, we have 2n−1 ≤ v1 < 2n.
(We normalize u so that the integer quotient gives exactly n bits; this is easy by comparing
the most significant bits of u and v, thus 22n−2 ≤ u1 < 22n.) The integer division of u1 by
v1 yields q1 and r such that u1 = q1v1 + r, with 0 ≤ r < v1, and q1 having exactly n bits. In
that case we have

q1 ≤ q =
u

v
< q1 + 1.

Indeed, q = u
v
≥ u1

v1
= q1v1+r

v1
, and q ≤ u1+u0

v1
≤ q1 +

r+u0

v1
< q1 + 1, since r + u0 < r + 1 ≤ v1.

3.5.2. Truncated divisor. This is the hard case. Write u = u1 + u0, and v = v1 + v0, where
0 ≤ u0, v0 < 1 with the same conventions as above. We prove in that case that:

(1) q1 − 2 < q =
u

v
< q1 + 1.

The upper bound holds as above. For the lower bound, we have u− (q1 − 2)v > u1 − (q1 −
2)(v1 + 1) ≥ q1v1 − (q1 − 2)(v1 + 1) = 2(v1 + 1)− q1 ≥ 2n − q1 > 0. This lower bound is the
best possible, since q1− 1 would be wrong; indeed, consider n = 3, v1 = 4, v0 = 7/8, u = 24:
this gives q1 = 6, but u/v = 64/13 < q1 − 1 = 5.
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As a consequence of Eq. (1), if the open interval (q1 − 2, q1 + 1) contains no rounding
boundary for the target precision, we can deduce the correct rounding of u/v just from the
value of q1. In other words, for directed rounding, the two only “bad cases” are when the
binary representation of q1 ends with 0000︸︷︷︸

n−p

or 0001︸︷︷︸
n−p

. We even can decide if rounding is correct,

since when q1 ends with 0010, the exact value cannot end with 0000, and similarly when q1
ends with 1111. Hence if n = p + k, i.e. if we use k extra bits with respect to the target
precision p, the failure probability is 21−k.

3.5.3. Avoiding Ziv’s strategy. In the failure case (q1 ending with 000 . . . 000x with directed
rounding, or 100 . . . 000x with rounding to nearest), we could try again with a larger working
precision p. However, we then need to perform a second division, and we are not sure this
new computation will enable us to conclude. In fact, we can conclude directly. Recall that
u1 = q1v1 + r. Thus u = q1v + (r + u0 − q1v0). We have to decide which of the following
five cases holds: (a) q1 − 2 < q < q1 − 1, (b) q = q1 − 1, (c) q1 − 1 < q < q1, (d) q = q1, (e)
q1 < q < q1 + 1.

s← q1v0
if s < r + u0 then q ∈ (q1, q1 + 1)
elif s = r + u0 then q = q1
else
t← s− (r + u0)
if t < v then q ∈ (q1 − 1, q1)

elif t = v then q = q1 − 1
else q ∈ (q1 − 2, q1 − 1)

3.5.4. Using Mulders’ short division. For larger operands, Mulders’ short division might be
faster than calling GMP’s integer division. A detailed description of Mulders’ short division
for integers can be found in [12]. We assume that we want the quotient integer significant
on n − 1 limbs, and we perform a short division on n limbs. Let q be the real quotient
u/v, scaled so that it has exactly n limbs; let q1 be the integer division we would perform
using GMP’s integer division as described above, and let q2 be the approximate quotient
returned by Algorithm ShortDiv or FoldDiv from [12]. From the above analysis, we know
that q1 − 2 < q < q1 + 1, the divisor being truncated or not. From Theorems 1 and 2 from
[12], we have q1 − 2n ≤ q2 ≤ q1 + 2n. It thus follows:

q1 − (2n+ 2) < q < q2 + (2n+ 1),

and in all cases the difference between q and q2 is less than 2n+ 2 ulps (on n limbs). Since
we want to round q on n− 1 limbs, and usually 2n+ 2 is small compared to the limb value,
in most cases we will be able to round correctly.

In the rare cases where we are not able to round correctly, we can either revert to the
above method using integer division, or better use the approximate quotient q2 to deduce
the exact quotient q1 and the corresponding remainder, which will trade a division for a
multiplication.

3.6. The mpfr sqrt function. The mpfr sqrt implementation uses the mpn sqrtrem func-
tion from GMP’s mpn level: given a positive integer m, it computes s and r such that

13



m = s2 + r with s2 ≤ m < (s + 1)2, or equivalently 0 ≤ r ≤ 2s. In other words, s is the
integer square root of m, rounded toward zero.

The idea is to multiply the input significand by some power of two, in order to obtain an
integer significand m whose integer square root s will have exactly p bits, where p is the
target precision. This is easy: m should have either 2p or 2p−1 bits. For directed rounding,
we then know that the result significand will be either s or s + 1, depending on the square
root remainder r being zero or not.

Algorithm FPSqrt.
Input: x = m · 2e, a target precision p, a rounding mode ◦
Output: y = ◦p(

√
x)

If e is odd, (m′, f)← (2m, e− 1), else (m′, f)← (m, e)
Write m′ := m12

2k +m0, m1 having 2p or 2p− 1 bits, 0 ≤ m0 < 22k

(s, r)← SqrtRem(m1)
If round to zero or down or r = m0 = 0, return s · 2k+f/2

else return (s+ 1) · 2k+f/2.

In case the input has more than 2p or 2p− 1 bits, it needs to be truncated, but the crucial
point is that that truncated part will not overlap with the remainder r from the integer
square root, so the sticky bit is simply zero when both parts are zero.

For rounding to nearest, the simplest way is to ask p + 1 bits for the integer square root
— thus m has now 2p + 1 or 2p + 2 bits. In such a way, we directly get the rounding bit,
which is the parity bit of s, and the sticky bit is determined as above. Otherwise, we have
to compare the value of the whole remainder, i.e. r plus the possible truncated input, with
s + 1/4, since (s + 1/2)2 = s2 + s + 1/4. Note that equality can occur — i.e. the “nearest
even rounding rule” — only when the input has at least 2p+ 1 bits; in particular it can not
happen in the common case when input and output have the same precision.

3.7. The inverse square root. The inverse square root (function mpfr rec sqrt) is based
on Ziv’s strategy and the mpfr mpn rec sqrt function, which given a precision p, and an
input 1 ≤ a < 4, returns an approximation x satisfying

x− 1

2
· 2−p ≤ a−1/2 ≤ x+ 2−p.

The mpfr mpn rec sqrt function is based on Newton’s iteration and the following lemma,
the proof of which can be found in [7]:

Lemma 3. Let A, x > 0, and x′ = x+ x
2
(1− Ax2). Then

0 ≤ A−1/2 − x′ = 3

2

x3

θ4
(A−1/2 − x)2,

for some θ ∈ (x,A−1/2).

We first describe the recursive iteration:

Algorithm ApproximateInverseSquareRoot.
Input: 1 ≤ a,A < 4 and 1/2 ≤ x < 1 with x− 1

2
· 2−h ≤ a−1/2 ≤ x+ 2−h

Output: X with X − 1
2
· 2−n ≤ A−1/2 ≤ X + 2−n, where n ≤ 2h− 3

r ← x2 [exact]
s← Ar [exact]

14



t← 1− s [rounded at weight 2−2h toward −∞]
u← xt [exact]
X ← x+ u/2 [rounded at weight 2−n to nearest]

Lemma 4. If h ≥ 11, 0 ≤ A − a < 2−h, then the output X of algorithm
ApproximateInverseSquareRoot satisfies

(2) X − 1

2
· 2−n ≤ A−1/2 ≤ X + 2−n.

Proof. Firstly, a ≤ A < a + 2−h yields a−1/2 − 1
2
· 2−h ≤ A−1/2 ≤ a−1/2, thus x − 2−h ≤

A−1/2 ≤ x+ 2−h.
Lemma 3 implies that the value x′ that would return Algorithm

ApproximateInverseSquareRoot if there was no rounding error satisfies 0 ≤ A−1/2 − x′ =
3
2
x3

θ4
(A−1/2 − x)2. Since θ ∈ (x,A−1/2), and A−1/2 ≤ x + 2−h, we have x ≤ θ + 2−h,

which yields x3

θ3
≤ (1 + 2−h

θ
)3 ≤ (1 + 2−10)3 ≤ 1.003 since θ ≥ 1/2 and h ≥ 11. Thus

0 ≤ A−1/2 − x′ ≤ 3.01 · 2−2h.
Finally the errors while rounding 1−s and x+u/2 in the algorithm yield 1

2
·2−n ≤ x′−X ≤

1
2
· 2−n + 1

2
· 2−2h, thus the final inequality is:

1

2
· 2−n ≤ A−1/2 −X ≤ 1

2
· 2−n + 3.51 · 2−2h.

For 2h ≥ n+ 3, we have 3.51 · 2−2h ≤ 1
2
· 2−n, which concludes the proof. □

The initial approximation is obtained using a bipartite table for h = 11. More precisely, we
split a 13-bit input a = a1a0.a−1 . . . a−11 into three parts of 5, 4 and 4 bits respectively, say
α, β, γ, and we deduce a 11-bit approximation x = 0.x−1x−2 . . . x−11 of the form T1[α, β] +
T2[α, γ], where both tables have 384 entries each. Those tables satisfy:

x+ (
1

4
− ε)2−11 ≤ a−1/2 ≤ x+ (

1

4
+ ε)2−11,

with ε ≤ 1.061. Note that this does not fulfill the initial condition of Algorithm
ApproximateInverseSquareRoot, since we have x − 0.811 · 2−h ≤ a−1/2 ≤ x + 1.311 · 2−h,
which yields X− 1

2
·2−n ≤ A−1/2 ≤ X+1.21·2−n, thus the right bound is not a priori fulfilled.

However, the only problematic case is n = 19, which gives exactly (n+ 3)/2 = 11, since for
12 ≤ n ≤ 18, the error terms in 2−2h are halved. An exhaustive search of all possible inputs
for h = 11 and n = 19 gives

X − 1

2
· 2−n ≤ A−1/2 ≤ X + 0.998 · 2−n,

the worst case being A = 1990149, X = 269098 (scaled by 219). Thus as soon as n ≥ 2,
Eq. (2) is fulfilled.

In summary, Algorithm ApproximateInverseSquareRoot provides an approximation X
of A−1/2 with an error of at most one ulp. However, if the input A was itself truncated
at precision ≥ p from an input A0 — for example when the output precision p is less

than the input precision — then we have |X − A−1/2| ≤ ulp(X), and |A−1/2 − A
−1/2
0 | ≤

1
2
|A− A0|A−3/2 ≤ 1

2
|A−A0|

A
A−1/2 ≤ 2−pA−1/2 ≤ ulp(X), thus |X − A−1/2

0 | ≤ 2 ulp(X).
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3.8. The mpfr remainder and mpfr remquo functions. The mpfr remainder and
mpfr remquo are useful functions for argument reduction. Given two floating-point num-
bers x and y, mpfr remainder computes the correct rounding of x cmod y := x− qy, where
q = ⌊x/y⌉, with ties rounded to the nearest even integer, as in the rounding to nearest mode.

Additionally, mpfr remquo returns a value congruent to q modulo 2n, where n is a small
integer (say n ≤ 64, see the documentation), and having the same sign as q or being zero.
This can be efficiently implemented by calling mpfr remainder on x and 2ny. Indeed, if
x = r′ cmod (2ny), and r′ = q′y+r with |r| ≤ y/2, then q ≡ q′ mod 2n. No double-rounding
problem can occur, since if x/(2ny) ∈ Z+1/2, then r′ = ±2n−1y, thus q′ = ±2n−1 and r = 0.
Whatever the input x and y, it should be noted that if ulp(x) ≥ ulp(y), then x − qy is

always exactly representable in the precision of y unless its exponent is smaller than the
minimum exponent. To see this, let ulp(y) = 2−k; multiplying x and y by 2k we get X = 2kx
and Y = 2ky such that ulp(Y ) = 1, and ulp(X) ≥ ulp(Y ), thus both X and Y are integers.
Now perform the division of X by Y , with quotient rounded to nearest: X = qY + R, with
|R| ≤ Y/2. Since R is an integer, it is necessarily representable with the precision of Y , and
thus of y. The quotient q of x/y is the same as that of X/Y , the remainder x− qy is 2−kR.
We assume without loss of generality that x, y > 0, and that ulp(y) = 1, i.e., y is an

integer.

Algorithm Remainder.
Input: x, y with ulp(y) = 1, a rounding mode ◦
Output: x cmod y, rounded according to ◦
1. If ulp(x) < 1, decompose x into xh + xl with ulp(xh) ≥ 1 and 0 ≤ xl < 1.
1a. r ← Remainder(xh, y) [exact, −y/2 ≤ r ≤ y/2]
1b. if r < y/2 or xl = 0 then return ◦(r + xl)
1c. else return ◦(r + xl − y) = ◦(xl − r)
2. Write x = m · 2k with k ≥ 0
3. z ← 2k mod y [binary exponentiation]
4. Return ◦(mz cmod y).

Note: at step (1a) the auxiliary variable r has the precision of y; since xh and y are integers,
so is r and the result is exact by the above reasoning. At step (1c) we have r = y/2, thus
r − y simplifies to −r.

4. High level functions

4.1. The cosine function. To evaluate cosx with a target precision of n bits, we use the
following algorithm with working precision m, after an additive argument reduction which
reduces x in the interval [−π, π], using the mpfr remainder function:

k ← ⌊
√
n/2⌋

r ← x2 rounded up
r ← r/22k

s← 1, t← 1
for l from 1 while exp(t) ≥ −m
t← t · r rounded up
t← t

(2l−1)(2l)
rounded up

s← s+ (−1)lt rounded down
16



do k times
s← 2s2 rounded up
s← s− 1

return s

The error on r after r ← x2 is at most 1ulp(r) and remains 1ulp(r) after r ← r/22k since that
division is just an exponent shift. By induction, the error on t after step l of the for-loop is
at most 3lulp(t). Hence as long as 3lulp(t) remains less than ≤ 2−m during that loop (this
is possible as soon as r < 1/

√
2) and the loop goes to l0, the error on s after the for-loop is

at most 2l02
−m (for |r| < 1, it is easy to check that s will remain in the interval [1

2
, 1[, thus

ulp(s) = 2−m). (An additional 2−m term represents the truncation error, but for l = 1 the
value of t is exact, giving (2l0 − 1) + 1 = 2l0.)
Denoting by ϵi the maximal error on s after the ith step in the do-loop, we have ϵ0 = 2l02

−m

and ϵk+1 ≤ 4ϵk + 2−m, giving ϵk ≤ (2l0 + 1/3)22k−m.

4.2. The sine function. The sine function is computed from the cosine, with a working
precision of m bits, after an additive argument reduction in [−π, π]:

c← cosx rounded away
t← c2 rounded away
u← 1− t rounded to zero
s← sign(x)

√
u rounded to zero

This algorithm ensures that the approximation s is between zero and sinx.
Since all variables are in [−1, 1], where ulp() ≤ 2−m, all absolute errors are less than 2−m.

We denote by ϵi a generic error with 0 ≤ ϵi < 2−m. We have c = cosx + ϵ1; t = c2 + ϵ2 =
cos2 x + 4ϵ3; u = 1 − t − ϵ4 = 1 − cos2 x − 5ϵ5; |s| =

√
u − ϵ6 =

√
1− cos2 x− 5ϵ5 − ϵ6 ≥

|sinx| − 5ϵ5
2|s| + ϵ6 (by Rolle’s theorem, |

√
u −
√
u′| ≤ 1

2
√
v
|u − u′| for v ∈ [u, u′], we apply it

here with u = 1− cos2 x− 5ϵ5, u
′ = 1− cos2 x.)

Therefore, if 2e−1 ≤ |s| < 2e, the absolute error on s is bounded by 2−m(5
2
21−e + 1) ≤

23−m−e.

4.2.1. An asymptotically fast algorithm for sin and cos. We extend here the algorithm pro-
posed by Brent for the exponential function to the simultaneous computation of sin and cos.
The idea is the following. We first reduce the input x to the range 0 < x < 1/2. Then we
decompose x as follows:

x =
k∑

i=1

ri
22i
,

where ri is an integer, 0 ≤ ri < 22
i−1

.
We define xj =

∑k
i=j

ri
22i

; then x = x1, and we can write xj =
rj

22
j + xj+1. Thus with

Sj := sin
rj

22
j and Cj := cos

rj

22
j :

sinxj = Sj cosxj+1 + Cj sinxj+1, cosxj = Cj cosxj+1 − Sj sinxj+1.

The 2k values Sj and Cj can be computed by a binary splitting algorithm, each one in
O(M(n) log n). Then each pair (sin xj, cosxj) can be computed from (sinxj+1, sinxj+1) with
four multiplies and two additions or subtractions.
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Error analysis. We use here Higham’s method. We assume that the values of Sj and Cj are
approximated up to a multiplicative factor of the form (1+u)3, where |u| ≤ 2−p, p ≥ 4 being
the working precision. We also assume that cosxj+1 and sin xj+1 are approximated with a
factor of the form (1 + u)kj . With rounding to nearest, the values of Sj cosxj+1, Cj sinxj+1,
Cj cosxj+1 and Sj sinxj+1 are thus approximated with a factor (1 + u)kj+4. The value of
sinxj is approximated with a factor (1 + u)kj+5 since there all terms are nonnegative.

We now analyze the effect of the cancellation in Cj cosxj+1 − Sj sinxj+1. We have
rj

22
j <

2−2j−1
, and for simplicity we define l := 2j−1; thus 0 ≤ Sj ≤ 2−l, and 1 − 2−2l−1 ≤ Cj ≤ 1.

Similarly we have xj+1 < 2−2l, thus 0 ≤ sinxj+1 ≤ 2−2l, and 1− 2−4l−1 ≤ cosxj+1 ≤ 1. The
error is multiplied by a maximal ratio of

Cj cosxj+1 + Sj sinxj+1

Cj cosxj+1 − Sj sinxj+1

≤ 1 + 2−l · 2−2l

(1− 2−2l−1)(1− 2−4l−1)− 2−l · 2−2l
,

which we can bound by

1 + 2−3l

1− 2−2l
≤ 1

(1− 2−2l)(1− 2−3l)
≤ 1

1− 2−2l+1
.

The product of all those factors for j ≥ 1 is bounded by 3 (remember l := 2j−1).

In summary, the maximal error is of the form 3[(1 + u)5k − 1], where 22
k−1

< p ≤ 22
k
. For

p ≥ 4, 5k · 2−p is bounded by 5/16, and (1+ 2−p)5k − 1 ≤ e5k·2
−p − 1 ≤ 6

5
· 5k · 2−p = 6k · 2−p.

Thus the final relative error bound is 18k · 2−p. Since k ≤ 6 for p ≤ 264, this gives a uniform
relative error bound of 2−p+7.

4.3. The tangent function. The tangent function is computed from the mpfr sin cos

function, which computes simultaneously sin x and cos x with a working precision of m bits:

s, c← ◦(sinx), ◦(cosx) [to nearest]
t← ◦(s/c) [to nearest]

We have s = sin(x)(1+θ1) and c = cos(x)(1+θ2) with |θ1|, |θ2| ≤ 2−m, thus t = (tanx)(1+θ)3

with |θ| ≤ 2−m. For m ≥ 2, |θ| ≤ 1/4, |(1 + θ)3 − 1| ≤ 4|θ|, thus we can write t =
(tanx)(1 + 4θ), thus |t− tanx| ≤ 4ulp(t).

4.4. The exponential function. The mpfr exp function implements three different algo-
rithms. For very large precision, it uses a O(M(n) log2 n) algorithm based on binary splitting
(see [15]). This algorithm is used only for precision greater than for example 10000 bits on
an Athlon.

For smaller precisions, it uses Brent’s method; if r = (x− n log 2)/2k where 0 ≤ r < log 2,
then

exp(x) = 2n · exp(r)2k

and exp(r) is computed using the Taylor expansion:

exp(r) = 1 + r +
r2

2!
+
r3

3!
+ · · ·

As r < 2−k, if the target precision is n bits, then only about l = n/k terms of the Taylor
expansion are needed. This method thus requires the evaluation of the Taylor series to order
n/k, and k squares to compute exp(r)2

k
. If the Taylor series is evaluated using a naive way,
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the optimal value of k is about n1/2, giving a complexity of O(n1/2M(n)). This is what is
implemented in mpfr exp2 aux.
If we use a baby step/giant step approach, the Taylor series can be evaluated in O(l1/2)

nonscalar multiplications — i.e., with both operands of full n-bit size — as described in
[19], thus the evaluation requires (n/k)1/2 + k multiplications, and the optimal k is now
about n1/3, giving a total complexity of O(n1/3M(n)). This is implemented in the function
mpfr exp2 aux2. (Note: the algorithm from Paterson and Stockmeyer was rediscovered by
Smith, who named it “concurrent series” in [24].)

4.5. The logarithm function. The logarithm function mpfr_log is defined using this ap-
proximated formula [18] based on the arithmetic-geometric mean (denoted by AG):

log x ≈ π

2 AG(1,4/s)
−m log 2 + o(log x 2−p)

with s = x · 2m > 2p/2.
From the arithmetic-geometric mean, we deduce the logarithm, naively bounding the

round-off errors. The only point is that the subtraction may be a cancellation: a maximum

of log
(

p log 2
|x−1|

)
bits can be lost.

4.6. The error function. Let n be the target precision, and x be the input value. For
|x| ≥

√
n log 2, we have | erf x| = 1 or 1− according to the rounding mode. Otherwise we use

the Taylor expansion.

4.6.1. Taylor expansion.

erf z =
2√
π

∞∑
k=0

(−1)k

k!(2k + 1)
z2k+1

erf_0(z, n), assumes z2 ≤ n/e
working precision is m
y ← ◦(z2) [rounded up]
s← 1
t← 1
for k from 1 do
t← ◦(yt) [rounded up]
t← ◦(t/k) [rounded up]
u← ◦( t

2k+1
) [rounded up]

s← ◦(s+ (−1)ku) [nearest]
if exp(u) < exp(s)−m and k ≥ z2 then break

r ← 2 ◦ (zs) [rounded up]
p← ◦(π) [rounded down]
p← ◦(√p) [rounded down]
r ← ◦(r/p) [nearest]

Let εk be the ulp-error on t (denoted tk) after the loop with index k. According to
Lemma 1, since tk is computed after 2k roundings (t0 = 1 is exact), we have εk ≤ 4k.
The error on u at loop k is thus at most 1 + 2εk ≤ 1 + 8k.
Let σk and νk be the exponent shifts between the new value of s at step k and respectively

the old value of s, and u. Writing sk and uk for the values of s and u at the end of step
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k, we have σk := exp(sk−1)− exp(sk) and νk := exp(uk)− exp(sk). The ulp-error τk on sk
satisfies τk ≤ 1

2
+ τk−12

σk + (1 + 8k)2νk .
The halting condition k ≥ z2 ensures that uj ≤ uj−1 for j ≥ k, thus the series

∑∞
j=k uj is

an alternating series, and the truncated part is bounded by its first term |uk| < ulp(sk). So

the ulp-error between sk and
∑∞

k=0
(−1)kz2

k!(2k+1)
is bounded by 1 + τk.

Now the error after r ← 2 ◦ (zs) is bounded by 1 + 2(1 + τk) = 2τk + 3. That on p after
p← ◦(π) is 1 ulp, and after p← ◦(√p) we get 2 ulps (since p← ◦(π) was rounded down).
The final error on r is thus at most 1 + 2(2τk + 3) + 4 = 4τk + 11 (since r is rounded up

and p is rounded down).

4.6.2. Very large arguments. Since erfcx ≤ 1√
πxex2

, we have for x2 ≥ n log 2 (which implies

x ≥ 1) that erfcx ≤ 2−n, thus erf x = 1 or erf x = 1− 2−n according to the rounding mode.
More precisely, [1, formulæ 7.1.23 and 7.1.24] gives:

√
πxex

2

erfcx ≈ 1 +
n∑

k=1

(−1)k 1× 3× · · · × (2k − 1)

(2x2)k
,

with the error bounded in absolute value by the next term and of the same sign.

4.7. The hyperbolic cosine function. The mpfr cosh (coshx) function implements the
hyperbolic cosine as :

coshx =
1

2

(
ex +

1

ex

)
.

The algorithm used for the calculation of the hyperbolic cosine is as follows1:

u ← ◦(ex)
v ← ◦(u−1)(3)

w ← ◦(u+ v)(4)

s ← 1

2
w(5)

(6)

Now, we have to bound the rounding error for each step of this algorithm. First, let us
consider the parity of hyperbolic cosine (cosh(−x) = cosh(x)) : the problem is reduced to
calculate coshx with x ≥ 0. We can deduce ex ≥ 1 and 0 ≤ e−x ≤ 1.

1◦() represent the rounding error and error(u) the error associate with the calculation of u
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error(u)
u← ◦(ex)
−∞ (•)

|u− ex| ≤ ulp(u)

error(v)
v ← ◦(u−1)
+∞ (••)

|v − e−x|
≤ |v − u−1|+ |u−1 − e−x|

≤ ulp(v) +
1

u · ex
|u− ex|

≤ ulp(v) +
1

u2
ulp(u) (⋆)

≤ ulp(v) + 2ulp(
1

u
) (⋆⋆)

≤ 3 ulp(v) (⋆ ⋆ ⋆)

(⋆)
With 1

ex
≤ 1

u
,

for that we must have u ≤ ex,
it is possible with a rounding of
u to −∞ (•)
(⋆⋆)
From inequation [Rule 6],

a · ulp(b) ≤ 2 · ulp(a · b)
if a = 1

u2 , b = u then

1

u2
ulp(u) ≤ 2ulp(

1

u
)

(⋆ ⋆ ⋆)
If ulp( 1

u
) ≤ ulp(v),

it is possible with a rounding of
v to +∞ (•)

error(w)
w ← ◦(u+ v)

|w − (ex + e−x)|
≤ |w − (u+ v)|+ |u− ex|+ |v − e−x|
≤ ulp(w) + ulp(u) + 3ulp(v)

≤ ulp(w) + 4ulp(u) (⋆)

≤ 5ulp(w) (⋆⋆)

(⋆)
With v ≤ 1 ≤ u
then ulp(v) ≤ ulp(u)
(⋆⋆)
With u ≤ w
then ulp(u) ≤ ulp(w)

error(s)
s← ◦(w

2
)

error(s) = error(w)

≤ 5ulp(s)

That shows the rounding error on the calculation of coshx can be bound by 5 ulp on
the result. So, to calculate the size of intermediary variables, we have to add, at least,
⌈log2 5⌉ = 3 bits the wanted precision.

4.8. The inverse hyperbolic cosine function. The mpfr acosh function implements the
inverse hyperbolic cosine. For x < 1, it returns NaN; for x = 1, acoshx = 0; for x > 1, the
formula acoshx = log(

√
x2 − 1 + x) is implemented using the following algorithm:

q ← ◦(x2) [down]
r ← ◦(q − 1) [down]
s← ◦(

√
r) [nearest]

t← ◦(s+ x) [nearest]
u← ◦(log t) [nearest]

Let us first assume that r ̸= 0. The error on q is at most 1 ulp(q), thus that on r is at most
ulp(r)+ulp(q) = (1+E) ulp(r) with d = exp(q)−exp(r) and E = 2d. Since r is smaller than
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x2− 1, we can use the simpler formula for the error on the square root, which gives a bound
(3
2
+E) ulp(s) for the error on s, and (2+E) ulp(t) for that on t. This gives a final bound of

(1
2
+(2+E)22−exp(u)) ulp(u) for the error on u (§2.9). We have: 2+E ≤ 21+max(1,d). Thus the

rounding error on the calculation of acoshx can be bounded by (1
2
+23+max(1,d)−exp(u)) ulp(u).

If we obtain r = 0, which means that x is near from 1, we need another algorithm. One
has x = 1+z, with 0 < z < 2−p, where p is the intermediate precision (which may be smaller

than the precision of x). The formula can be rewritten: acoshx = log(1+
√
z(2 + z) + z) =√

2z(1− ε(z)) where 0 < ε(z) < z/12. We use the following algorithm:

q ← ◦(x− 1) [down]
r ← 2q
s← ◦(

√
r) [nearest]

The error on q is at most 1 ulp(q), thus the error on r is at most 1 ulp(r). Since r is smaller
than 2z, we can use the simpler formula for the error on the square root, which gives a bound
3
2
ulp(s) for the error on s. The error on acoshx is bounded by the sum of the error bound

on
√
2z and ε(z)

√
2z < 2−p

12
21+exp(s) = 1

6
ulp(s). Thus the rounding error on the calculation

of acosh x can be bounded by
(
3
2
+ 1

6

)
ulp(s) < 2 ulp(s).

4.9. The hyperbolic sine function. The mpfr sinh (sinhx) function implements the hy-
perbolic sine as :

sinhx =
1

2

(
ex − 1

ex

)
.

The algorithm used for the calculation of the hyperbolic sine is as follows2:

u ← ◦(ex)
v ← ◦(u−1)

w ← ◦(u− v)

s ← 1

2
w

Now, we have to bound the rounding error for each step of this algorithm. First, let
consider the parity of hyperbolic sine (sinh(−x) = − sinh(x)) : the problem is reduced to
calculate sinhx with x ≥ 0. We can deduce ex ≥ 1 and 0 ≤ e−x ≤ 1.

2◦() represent the rounding error and error(u) the error associated with the calculation of u
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error(u)
u←▽(ex)
(•)

|u− ex| ≤ ulp(u)

error(v)
v ←△(u−1)
(••)

|v − e−x|
≤ |v − u−1|+ |u−1 − e−x|

≤ ulp(v) +
1

u · ex
|u− ex|

≤ ulp(v) +
1

u2
ulp(u) (⋆)

≤ ulp(v) + 2ulp(
1

u
) (⋆⋆)

≤ 3 ulp(v) (⋆ ⋆ ⋆)

(⋆)
With 1

u
≤ 1

ex
,

for that we must have ex ≤ u,
it is possible with u = ▽(ex) (•)
(⋆⋆)
From inequation [Rule 6],

a · ulp(b) ≤ 2 · ulp(a · b)
if a = 1

u2 , b = u then

1

u2
ulp(u) ≤ 2ulp(

1

u
)

(⋆ ⋆ ⋆)
If ulp( 1

u
) ≤ ulp(v),

it is possible with v = △(u−1)
(••)

error(w)
w ← ◦(u− v)

|w − (ex − e−x)|
≤ |w − (u− v)|+ |u− ex|+ | − v + e−x|
≤ ulp(w) + ulp(u) + 3ulp(v)

≤ ulp(w) + 4ulp(u) (⋆)

≤ (1 + 4 · 2exp(u)−exp(w))ulp(w) (⋆⋆)

(⋆)
With v ≤ 1 ≤ u
then ulp(v) ≤ ulp(u)
(⋆⋆)
see subsection 2.3

error(s)
s← ◦(w

2
)

error(s) = error(w)

≤ (1 + 4 · 2exp(u)−exp(w))ulp(w)

That show the rounding error on the calculation of sinhx can be bound by (1 + 4 ·
2exp(u)−exp(w))ulp(w), then the number of bits need to add to the want accuracy to define
intermediary variable is :

Nt = ⌈log2(1 + 4 · 2exp(u)−exp(w))⌉

4.10. The inverse hyperbolic sine function. The mpfr asinh (asinhx) function imple-
ments the inverse hyperbolic sine as :

asinh = log
(√

x2 + 1 + x
)
.

The algorithm used for the calculation of the inverse hyperbolic sine is as follows
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s ← ◦(x2)
t ← ◦(s+ 1)

u ← ◦(
√
t)

v ← ◦(u+ x)

w ← ◦(log v)
Now, we have to bound the rounding error for each step of this algorithm. First, let

consider the parity of hyperbolic arc sine (asinh(−x) = −asinh(x)) : the problem is reduced
to calculate asinhx with x ≥ 0.

error(s)
s← ◦(x2)

|s− x2|
≤ ulp(s) (⋆)

error(t)
t ← ▽(s + 1)
(•)

|t− (x2 + 1)|
≤ 2ulp(t) (⋆)

(⋆)
see subsection 2.3

error(u)
u← ◦(

√
t)

|u−
√
x2 + 1|

≤ 3ulp(u) (⋆)

(⋆)
see subsection 2.7
with (•)

error(v)
v ← ◦(u+ x)

|v − (
√
x2 + 1 + x)|

≤ 5ulp(v) (⋆)

(⋆)
see subsection 2.3

error(w)
w ← ◦(log v)

|w − log(
√
x2 + 1 + x)|

≤ (1 + 5.22−exp(w))ulp(w) ⋆

(⋆)
see subsection 2.9

That shows the rounding error on the calculation of asinhx can be bound by (1 +
5.22−exp(w)) ulp on the result. So, to calculate the size of intermediary variables, we have to
add, at least, ⌈log2(1 + 5.22−exp(w))⌉ bits the wanted precision.

4.11. The hyperbolic tangent function. The hyperbolic tangent (mpfr tanh) is com-
puted from the exponential:

tanhx =
e2x − 1

e2x + 1
.

The algorithm used is as follows, with working precision p and rounding to nearest:

u← ◦(2x)
v ← ◦(eu)
w ← ◦(v + 1)
r ← ◦(v − 1)
s← ◦(r/w)

Now, we have to bound the rounding error for each step of this algorithm. First, thanks to
the parity of hyperbolic tangent — tanh(−x) = − tanh(x) — we can consider without loss
of generality that x ≥ 0.
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We use Higham’s notation, with θi denoting variables such that |θi| ≤ 2−p. Firstly, u is
exact, assuming x is exact with precision p. Then v = e2x(1+ θ1) and w = (e2x+1)(1+ θ2)

2.
The error on r is bounded by 1

2
ulp(v)+ 1

2
ulp(r). Assume ulp(v) = 2kulp(r), with k ≥ 0; then

the error on r is bounded by 1
2
(2k + 1)ulp(r). We can thus write r = (e2x − 1)(1 + θ3)

2k+1,

and then s = tanh(x) · (1 + θ4)
2k+4.

Lemma 5. For 0 < x ≤ 1/2 and 0 < y ≤ x−1/2, we have:

0 < (1 + x)y − 1 ≤ 1.4 · y · x.

Proof. We have (1 + x)y = ey·log(1+x), with 0 < y · log(1 + x) ≤ x−1/2 · log(1 + x). The
function x−1/2 · log(1 + x) is increasing on ]0, 1/2], and reaches ≈ 0.573 for x = 1/2. Thus
0 < y · log(1+x) < 0.574. Now it is easy to see that for 0 < t < 0.574, we have |et−1| ≤ 1.4 t.
Thus 0 < (1 + x)y − 1 ≤ 1.4 · y · log(1 + x). The result follows from log(1 + x) ≤ x for
0 < x ≤ 1/2. □

First, note that for t > 0 and q ≥ 1, one has |(1 − t)q − 1| ≤ |(1 + t)q − 1| due to the

triangle inequality on the development. Thus |(1 + θ4)
2k+4 − 1| ≤ |(1 + 2−p)2

k+4 − 1|. Then
one can apply the above lemma for x = 2−p and y = 2k + 4, assuming 2k + 4 ≤ 2p/2.
We get |(1 + θ4)

2k+4 − 1| ≤ |(1 + 2−p)2
k+4 − 1| ≤ 1.4(2k + 4)2−p, and thus we can write

s = tanh(x)[1 + 1.4(2k + 4)θ5] with |θ5| ≤ 2−p. Since 2k + 4 ≤ 2max(3,k+1), the relative error
on s is thus bounded by 2max(4,k+2)−p.

The condition 2k + 4 ≤ 2p/2 is checked in the code with max(3, k + 1) ≤ ⌊p/2⌋, so that:

2k + 4 ≤ 2max(3,k+1) ≤ 2⌊p/2⌋ ≤ 2p/2.

4.12. The inverse hyperbolic tangent function. The mpfr atanh (atanhx) function
implements the inverse hyperbolic tangent as :

atanh =
1

2
log

1 + x

1− x
.

The algorithm used for the calculation of the inverse hyperbolic tangent is as follows:

s ← ◦(1 + x)

t ← ◦(1− x)

u ← ◦(s
t
)

v ← ◦(log u)

w ← ◦(1
2
v)

Now, we have to bound the rounding error for each step of this algorithm. First, let
consider the parity of hyperbolic arc tangent (atanh(−x) = −atanh(x)) : the problem is
reduced to calculate atanhx with x ≥ 0.

25



error(s)
s←△(1 + x)
(•)

|s− (1 + x)|
≤ 2ulp(s) (⋆) see subsection 2.3

error(t)
t ← ▽(1 − x)
(••)

|t− (1− x)|
≤ (1 + 2exp(x)−exp(t))ulp(t) (⋆)

(⋆)
see subsection 2.3

error(u)
u← ◦( s

t
)

|u− 1 + x

1− x
|

≤ (1 + 2× 2 +

· · · 2× (1 + 2exp(x)−exp(t)))ulpu (⋆)

≤ (7 + 2exp(x)−exp(t)+1)ulp(u)

(⋆)
see subsection 2.5
with (•) and (••)

error(v)
v ← ◦(log(u))

|v − (log
1 + x

1− x
)|

≤ (1 + (7 + 2exp(x)−exp(t)+1)

· · · ×22−exp(v))ulp(v) (⋆)

≤ (1 + 7× 22−exp(v) +

· · · 2exp(x)−exp(t)−exp(v)+3)ulp(v)

(⋆)
see subsection 2.9

error(w)
w ← ◦(1

2
v)

|w − 1

2
log

1 + x

1− x
|

≤ (1 + 7× 22−exp(v) +

· · · 2exp(x)−exp(t)−exp(v)+3)ulp(w) ⋆

(⋆) exact

That shows the rounding error on the calculation of atanhx can be bound by (1 + 7 ×
22−exp(v) + 2exp(x)−exp(t)−exp(v)+3) ulp on the result. So, to calculate the size of intermediary
variables, we have to add, at least, ⌈log2(1 + 7 × 22−exp(v) + 2exp(x)−exp(t)−exp(v)+3)⌉ bits the
wanted precision.

4.13. The arc-sine function.

(1) We use the formula arcsin x = arctan x√
1−x2

(2) When x is near 1 we will experience uncertainty problems:
(3) If x = a(1 + δ) with δ being the relative error then we will have

1− x = 1− a− aδ = (1− a)[1− a

1− a
δ]

So when using the arc tangent programs we need to take into account that decrease
in precision.

4.14. The arc-cosine function.

(1) Obviously, we used the formula

arccos x =
π

2
− arcsin x
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(2) The problem of arccos is that it is 0 at 1, so, we have a cancellation problem to treat
at 1.

(3) (Suppose x ≥ 0, this is where the problem happens) The derivative of arccos is −1√
1−x2

and we will have

1

2
√
1− x

≤ | −1√
1− x2

| = 1√
(1− x)(1 + x)

≤ 1√
1− x

So, integrating the above inequality on [x, 1] we get
√
1− x ≤ arccos x ≤ 2

√
1− x

(4) The important part is the lower bound that we get which tell us a upper bound on
the cancellation that will occur:
The terms that are canceled are π/2 and arcsin x, their order is 2. The number of
canceled terms is so

1-1/2*MPFR_EXP(1-x)

4.15. The arc-tangent function. The arc-tangent function admits the following argument
reduction:

arctanx = 2arctan
x

1 +
√
1 + x2

= 2arctan

√
1 + x2 − 1

x
.

If applied once, it reduces the argument to |x| < 1, then each successive application reduces
x by a factor of at least 2.

Assume |x| ≤ 1. We approximate
√
1+x2−1

x
using the following algorithm:

s← ◦(x2) [nearest]
t← ◦(1 + s) [nearest]
u← ◦(

√
t) [nearest]

v ← ◦(u− 1)) [nearest]
w ← ◦( v

x
) [nearest]

Assuming all computations are done with precision p, and denoting θi a value such that
|θi| ≤ 2−p, we have s = x2(1 + θ1), t = (1 + s)(1 + θ2) = (1 + x2(1 + θ1))(1 + θ2) =
(1 + x2)(1 + θ3)

2, u =
√
t(1 + θ4) =

√
1 + x2(1 + θ3)(1 + θ4) =

√
1 + x2(1 + θ5)

2. Now let us
write u− 1 = (

√
1 + x2 − 1)(1 + λ); we have

λ =

√
1 + x2√

1 + x2 − 1
(2θ5 + θ25).

For |x| ≤ 1, we have 2/x2 ≤
√
1+x2√

1+x2−1
≤ (2 +

√
2)/x2, and for p ≥ 5 the expression (2 +√

2)(2θ5 + θ25) is bounded by 7θ5, thus we can write u − 1 = (
√
1 + x2 − 1)(1 + 7θ5/x).

It follows v = (u − 1)(1 + θ6) and w =
√
1+x2−1

x
(1 + 7θ5/x)(1 + θ7)

2. Still for |x| ≤ 1
and p ≥ 5, the product (1 + 7θ5/x)(1 + θ7)

2 can be written (1 + 10θ8/x), thus we have

w =
√
1+x2−1

x
(1 + 10θ8/x), and the relative error on w is bounded by 10/x · 2−p.

Now if we want to apply several times this argument reduction, we need to analyze the
error when x is not exact, but say x = x̄(1+εθ), with ε ≥ 0 a parameter, and |θ| ≤ 2−p. The
above analysis remains valid with x replaced by x̄(1+εθ), thus we get w = f(x)(1+10θ8/x),
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with f(x) =
√
1+x2−1

x
, and x = x̄(1 + εθ). The derivative of f is bounded by 1/2 for |x| ≤ 1,

thus |f(x)− f(x̄)| ≤ 1
2
εx̄. Thus we have

w =

√
1 + x̄2 − 1

x̄
(1 +

εθ9
2
)(1 + 10θ8/x).

Assuming ε ≤ 21/x, we have w =
√
1+x̄2−1

x̄
(1+ 21

2
θ10/x)(1+ 10θ8/x) =

√
1+x̄2−1

x̄
(1+ 21θ11/x),

as long as |x| ≥ 210 · 2−p. Since initially ε = 0, this proves by induction that ε ≤ 21/x, and
the relative error on w after several argument reductions is bounded by 21/x · 2−p, where x
is the last reduced argument. Since the arc-tangent function has a derivative less than 1, the

corresponding absolute error bound for arctanw is also 21/x · 2−p. Since arctan
√
1+x2−1

x
≥

5x/16 for 0 ≤ x ≤ 1, the relative error bound on arctan
√
1+x2−1

x
is 27−p/x2 ≤ 29−2exp(x)−p.

4.15.1. Binary splitting. The Taylor series for arctan is suitable for analysis using Binary
splitting.

This method is detailed for example in “Pi and The AGM” p 334. It is efficient for rational
numbers and is non efficient for non rational numbers.

The efficiency of this method is then quite limited. One can then wonder how to use it
for non rational numbers.

Using the formulas

arctan (−x) = − arctan x and arctan x+ arctan
1

x
=
π

2
sign(x)

we can restrict ourselves to 0 ≤ x ≤ 1.
Writing

x =
∞∑
i=1

ui
2i

with ui ∈ {0, 1}

or

x =
∞∑
i=1

ui
22i

with ui ∈ {0, 1, . . . , 22
i−1} if i > 1 and u1 ∈ {0, 1}

we can compute cos, sin or exp using the formulas

cos (a+ b) = cos a cos b− sin a sin b
sin (a+ b) = sin a cos b+ cos a sin b

exp(a+ b) = (exp a)(exp b)

Unfortunately for arctan there is no similar formulas. The only formula known is

arctan x+ arctan y = arctan
x+ y

1− xy
+ kπ with k ∈ Z

we will use

arctan x = arctan y + arctan
x− y
1 + xy

with x, y > 0 and y < x.
Summarizing we have the following facts:

(1) We can compute efficiently arctan u

22
k with k ≥ 0 and u ∈ {0, 1, . . . , 22k−1}

(2) We have a sort of addition formula for arctan, the term kπ being zero.

So I propose the following algorithm for x given in [0, 1].
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(1) Write vk = 22
k

(2) Define

sk+1 =
sk − Ak

1 + skAk

and s0 = x

(3) Ak is chosen such that

0 ≤ sk − Ak <
1

vk
and Ak is of the form uk

vk
with uk ∈ N .

(4) We have the formula

arctan x = arctan A0 + arctan s1
= arctan A0 + arctan A1 + arctan s2
= arctan A0 + · · ·+ arctan AN + arctan sN+1

the number sN is decreasing toward 0 and we then have

arctan x =
∑i=∞

i=0 arctan Ai

The drawbacks of this algorithm are:

(1) Complexity of the process is high, higher than the AGM. Nevertheless there is some
hope that this can be more efficient than AGM in the domain where the number of
bits is high but not too large.

(2) There is the need for division which is computationally expensive.
(3) We may have to compute arctan (1/2).

4.15.2. Estimate of absolute error. By that analysis we mean that a and b have absolute
error D if |a− b| ≤ D.
I give a remind of the algorithm:

(1) Write vk = 22
k

(2) Define

sk+1 =
sk − Ak

1 + skAk

and s0 = x

(3) Ak is chosen such that

0 ≤ sk − Ak <
1

vk
and Ak is of the form uk

vk
with uk ∈ N .

(4) We have the formula

arctan x = arctan A0 + arctan s1
= arctan A0 + arctan A1 + arctan s2
= arctan A0 + · · ·+ arctan AN + arctan sN+1

the number sN is very rapidly decreasing toward 0 and we then have

arctan x =
i=∞∑
i=0

arctan Ai

29



(5) The approximate arc tangent is then

i=N0∑
i=0

arctanmi
Ai

with arctanmi
being the sum of the first 2mi terms of the Taylor series for arctan.

We need to estimate all the quantities involved in the computation.

(1) We have the upper bound

0 ≤ sk+1 =
sk − Ak

1 + skAk

≤ sk − Ak ≤
1

vk

(2) The remainder of the series giving arctan x is

∞∑
i=N0+1

arctan Ai ≤
∞∑

i=N0+1

Ai

≤
∞∑

i=N0+1

si

≤
∞∑

i=N0+1

1

vi−1

≤
∞∑

i=N0

1

vi

≤
∞∑

i=N0

1

22i
=

cN0

22
N0

With cN0 ≤ 1.64. If N0 ≥ 1 then cN0 ≤ 1.27. If N0 ≥ 2 then cN0 ≤ 1.07.
It remains to determine the right N0.

(3) The partial sum of the Taylor series for arctan have derivative bounded by 1 and
consequently don’t increase error.

(4) The error created by using the partial sum of the Taylor series of arctan is bounded
by

(Ai)
2×2mi+1

2 ∗ 2mi + 1

and is thus bounded by

1

2× 2mi + 1
[

1

22i−1 ]
2×2mi+1 =

1

2× 2mi + 1
[2−2i−1

]2×2mi+1

≤ 1

2× 2mi + 1
[2−2i−1

]2×2mi

≤ 1

2× 2mi + 1
2−2i+mi

The calculation of arctan Ai

Ai
is done by using integer arithmetic and returning a fraction

that is converted to mpfr type so there is no error. But to compute arctan Ai =
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Ai[
arctan Ai

Ai
] we need to use real arithmetic so there is 1ulp error.

In total this is (N0)ulp.
(5) Addition give 1ulp There are (N0 − 1) addition so we need to take (N0 − 1)ulp.
(6) The division yields errors:

(a) Having errors in the computation of Ai is of no consequences: It changes the
quantity being arc-tangented and that’s all. Errors concerning the computation
of sN+1 in contrary adds to the error.

(b) The subtract operation si −Ai has the effect of subtracting very near numbers.
But Ai has exactly the same first 1 and 0 than si so we can expect this operation
to be nondestructive.

(c) Extrapolating from the previous result we can expect that the error of the quan-
tity si−Ai

1+siAi
is err(si) + 1ulp

(7) The total sum of errors is then (if no errors are done in the counting of errors)

Err(arctan) =

i=N0∑
i=0

1

2 ∗ 2mi + 1
2−2i+mi +

cN0

22
N0

+ (N0 − 1)2−Prec

+ (N0 − 1)2−Prec + (N0)2
−Prec [mi = N0 − i]

=

i=N0∑
i=0

1

2 ∗ 2N0−i + 1
2−2N0 +

cN0

22
N0

+ (3 ∗N0 − 2)2−Prec

=

i=N0∑
i=0

1

2 ∗ 2i + 1
2−2N0 +

cN0

22
N0

+ (3 ∗N0 − 2)2−Prec

≤ {
i=∞∑
i=0

1

2 ∗ 2i + 1
}2−2N0 +

cN0

22
N0

+ (3 ∗N0 − 2)2−Prec

≤ {0.77}2−2N0 +
1.63

22
N0

+ (3 ∗N0 − 2)2−Prec

=
2.4

22
N0

+ (3 ∗N0 − 2)2−Prec

This is what we wish thus Err(arctan) < 2−prec arctan with prec arctan is the re-
quested precision on the arc-tangent. We thus want:

2.4

22
N0
≤ 2−prec arctan−1

and

(3×N0 − 2)2−Prec ≤ 2−prec arctan−1

i.e.

N0 ≥
ln (prec arctan+ 1 + ln 2.4

ln 2
)

ln 2

that we approach by (since the logarithm is expensive):

N0 = ceil(log(prec arctan+ 2.47) ∗ 1.45)
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and we finally have:

Prec = prec arctan+ {1 + ceil(
ln (3N0 − 2)

ln 2
)}

4.15.3. Estimate of the relative error. we say that a and b have relative error δ if

a = b(1 + ∆) with |∆| ≤ δ

This is the error definition used in mpfr. So we need to redo everything in order to have a
consistent analysis.

(1) We can use all previous estimates:
(a) Remainder estimate:

∞∑
i=N0+1

arctan Ai ≤
cN0

22
N0

so the relative error will be 1
arctan x

cN0

22
N0

.

(b) The relative error created by using a partial sum of Taylor series is bounded by
1

arctan Ai

1
2×2mi+1

2−2i+mi .

(c) The multiplication arctan Ai = Ai[
arctan Ai

Ai
] takes 1 ulp of relative error.

(d) Doing the subtraction si−Ai is a gradual underflow operation: it decreases the
precision of si − Ai.

(e) The multiplication aiAi creates 1 ulp of error. This is not much and this relative
error is further reduced by adding 1.

(1) We have

arctan b(1 + ∆) = arctan(b+ b∆)
∼ arctan b+ 1

1+b2
(b∆)

= [arctan b][1 + { b
(1+b2) arctan b

}∆]

A rapid analysis gives 0 ≤ b
(1+b2) arctan b

≤ 1 and then we can say that the function

arctan does not increase the relative error.
(2) So we have two possible solutions:

(a) Do a relative analysis of our algorithm.
(b) Use the previous analysis since the absolute error D is obviously equal to |b|δ (δ

being the relative error)
it is not hard to see that second solution is certainly better: The formulas are additive.
Our analysis will work without problems.

(3) It then suffices to replace in the previous section 2−prec arctan by 2−prec arctan arctan x.
(4) If |x| ≤ 1 then | arctan x| is bounded below by |x| 4

π
∼ |x|1.27. So it suffices to have

an absolute error bounded above by

2−prec arctan |x|1.27

In this case we will add 2−MPFR EXP (x) to prec arctan
(5) If |x| ≥ 1 then arctan x is bounded below by π

4
. So it suffices to have an absolute

error bounded above by

2−prec arctan 1.27
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we will add 1 to prec arctan.
In this case we need to take into account the error caused by the subtraction:

arctan x = ±π
2
− arctan

1

x

4.15.4. Implementation defaults.

(1) The computation is quite slow, this should be improved.
(2) The precision should be decreased after the operation si − Ai. And several other

improvement should be done.

4.16. The Euclidean distance function. The mpfr hypot function implements the Eu-
clidean distance function:

hypot(x, y) =
√
x2 + y2.

If one of the variables is zero, then hypot is computed using the absolute value of the other
variable. Assume that 0 < y ≤ x. Using the first degree Taylor polynomial, we have:

0 <
√
x2 + y2 − x < y2

2x
.

Let px, py be the precisions of the input variables x and y respectively, pz the output

precision and z = ◦pz(
√
x2 + y2) the expected result. Let us assume, as it is the case in

MPFR, that the minimal and maximal acceptable exponents (respectively emin and emax)
satisfy 2 < emax and emax = −emin.

When rounding to nearest, if px ≤ pz and
pz+1
2

< exp(x)−exp(y), we have y2

2x
< 1

2
ulppz(x);

if pz < px, the condition
px+1
2

< exp(x)−exp(y) ensures that y2

2x
< 1

2
ulppx(x). In both cases,

these inequalities show that z = Npz(x), except that tie case is rounded toward positive
infinity since hypot(x,y) is strictly greater than x.

With the other rounding modes, the conditions pz/2 < exp(x) − exp(y) if px ≤ pz, and
px/2 < exp(x) − exp(y) if pz < px mean in a similar way that z = ◦pz(x), except that we
need to add one ulp to the result when rounding toward positive infinity and x is exactly
representable with pz bits of precision.
When none of the above conditions are satisfied, we use the following algorithm, whose

precision is guaranteed when exp(x)− exp(y) ≤ emax − 1:

Algorithm hypot 1

Input: x and y with |y| ≤ |x|, p the working precision with p ≥ pz.

Output:
√
x2 + y2 with

{
p− 4 bits of precision if p < max(px, py),
p− 2 bits of precision if p ≥ max(px, py).

s← ⌊(emax − 1)/2⌋ − exp(x)
xs ← Z(x× 2s)
ys ← Z(y × 2s)
u← Z(x2s)
v ← Z(y2s)
w ← Z(u+ v)
t← Z(

√
w)

z ← Z(t/2s)
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In order to avoid undue overflow during computation, we shift inputs’ exponents by s =
⌊ emax−1

2
⌋ − exp(x) before computing squares and shift back the output’s exponent by −s

using the fact that
√

(x.2s)2 + (y.2s)2/2s =
√
x2 + y2. We show below that overflow cannot

occur, and underflow cannot occur either when exp(x)− exp(y) ≤ emax − 1.
We check first that the exponent shift does not cause overflow and, in the same time, that

the squares of the shifted inputs never overflow. For x, we have exp(x)+s = ⌊(emax−1)/2⌋,
so exp(x2s) ≤ emax − 1 and neither xs nor x2s overflows. Therefore we have: Z(x2s) ≤ x2s <
2emax−1. For y, note that we have ys ≤ xs because y ≤ x, thus ys and y

2
s do not overflow.

Secondly, let us see that the exponent shift does not cause underflow. For x, we know that
0 ≤ exp(x) + s, thus neither xs nor x

2
s underflows. For y, the condition exp(x)− exp(y) ≤

emax − 1 implies that ⌊(emax − 1)/2⌋ − s − exp(y) ≤ emax − 1, and since emax/2 − 1 ≤
⌊(emax − 1)/2⌋, we deduce emin/2 = −emax/2 ≤ exp(y) + s, which shows that ys and its
square do not underflow (even when taking the rounding into account since the scaling is
exact).

Thirdly, the addition does not overflow because u+ v < 2x2s and it was shown above that
Z(x2s) < 2emax−1. It cannot underflow because both operands are positive.

Fourthly, as xs < t, the square root does not underflow. Due to the exponent shift, we
have 1 ≤ xs, then w is greater than 1 and thus greater than its square root t, so the square
root does overflow.

Finally, let us show that the back shift raises neither underflow nor overflow unless the
exact result is greater than or equal to 2emax . Because no underflow has occurred so far
exp(x) ≤ exp(t) − s which shows that it does not underflow. And all roundings being

toward zero, we have z ≤
√
x2 + y2, so if 2emax ≤ z, then the exact value is also greater than

or equal to 2emax .
Let us analyse now the error of the algorithm hypot 1:

p < min(px, py) max(px, py) ≤ p
xs ← Z(x× 2s) error(xs) ≤ 1 ulp(xs) exact
ys ← Z(y × 2s) error(ys) ≤ 1 ulp(ys) exact
u← Z(x2s) error(u) ≤ 6 ulp(u) 1 ulp(u)
v ← Z(y2s) error(v) ≤ 6 ulp(v) 1 ulp(v)
w ← Z(u+ v) error(w) ≤ 13 ulp(w) 3 ulp(w)
t← Z(

√
w) error(t) ≤ 14 ulp(t) 4 ulp(t)

z ← Z(t/2s) exact.
And in the intermediate case, if min(px, py) ≤ p < max(px, py), we have
w ← Z(u+ v) error(w) ≤ 8 ulp(w)
t← Z(

√
w) error(t) ≤ 9 ulp(t).

Thus, 2 bits of precision are lost when max(px, py) ≤ p and 4 bits when p does not satisfy
this relation.

4.17. The floating multiply-add function. The mpfr fma (fma(x, y, z)) function imple-
ments the floating multiply-add function as :

fma(x, y, z) = z + x× y.

The algorithm used for this calculation is as follows:
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u ← ◦(x× y)
v ← ◦(z + u)

Now, we have to bound the rounding error for each step of this algorithm.

error(u)
u← ◦(x× y)

|u− (xy)| ≤ ulp(u)

error(v)
v ← ◦(z + u)

|v − (z + xy)| ≤ ulp(v) + |(z + u)− (z + xy)|
≤ (1 + 2eu−ev)ulp(v) (⋆)

(⋆)
see subsection 2.3

That shows the rounding error on the calculation of fma(x, y, z) can be bound by (1 +
2eu−ev)ulp on the result. So, to calculate the size of intermediary variables, we have to add,
at least, ⌈log2(1 + 2eu−ev)⌉ bits the wanted precision.

4.18. The expm1 function. The mpfr expm1 (expm1(x)) function implements the expm1
function as :

expm1(x) = ex − 1.

The algorithm used for this calculation is as follows:

u ← ◦(ex)
v ← ◦(u− 1)

Now, we have to bound the rounding error for each step of this algorithm.

error(u)
u← ◦(ex)

|u− ex| ≤ ulp(u)

error(v)
v ← ◦(u− 1) |v − (ex − 1)| ≤ (1 + 2eu−ev)ulp(v) (⋆)

(⋆)
see subsection 2.3

That shows the rounding error on the calculation of expm1(x) can be bound by (1 +
2eu−ev)ulp on the result. So, to calculate the size of intermediary variables, we have to add,
at least, ⌈log2(1 + 2eu−ev)⌉ bits the wanted precision.

4.19. The log1p function. The mpfr log1p function implements the log1p function as:

log1p(x) = log(1 + x).

We could use the argument reduction

log1p(x) = 2log1p

(
x

1 +
√
1 + x

)
,
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which reduces x to about
√
x when x ≫ 1, and in any case to less than x/2 when x > 0.

However, if 1+x can be computed exactly with the target precision, then it is more efficient
to directly call the logarithm, which has its own argument reduction. If 1 + x cannot
be computed exactly, this implies that x is either very small, in which case no argument
reduction is needed, or very large, in which case log1p(x) ≈ log x.
The algorithm used for this calculation is as follows (with rounding to nearest):

v ← ◦(1 + x)

w ← ◦(log v)

Now, we have to bound the rounding error for each step of this algorithm.

error(v)
v ← ◦(1 + x) |v − (1 + x)| ≤ 1

2
ulp(v)

error(w)
w ← ◦(log v) |w − log(1 + x)| ≤ (

1

2
+ 21−ew)ulp(w) (⋆) see subsection 2.9

The 21−ew factor in the error reflects the possible loss of accuracy in 1 + x when x is small.
Note that if v = ◦(1 + x) is exact, then the error bound simplifies to 21−ewulp(w), i.e., 21−p,
where p is the working precision.

4.20. The log2 or log10 function. The mpfr log2 or mpfr log10 function implements
the log in base 2 or 10 function as :

log2(x) =
log x

log 2

or

log10(x) =
log x

log 10
.

The algorithm used for this calculation is the same for log2 or log10 and is described as
follows for t = 2 or 10:

u ← ◦(log(x))
v ← ◦(log(t))

w ← ◦(u
v
)

Now, we have to bound the rounding error for each step of this algorithm with x ≥ 0 and
y is a floating number.
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error(u)
u ←
△(log(x))
(•)

|u− log(x)| ≤ ulp(u)

error(v)
v ← ▽(log t)
(••)

|v − log t| ≤ ulp(v)

error(w)
w ← ◦(u

v
) |v − (

log x

log t
)| ≤ 5ulp(w) (⋆)

(⋆)
see subsection 2.6

That shows the rounding error on the calculation of log2 or log10 can be bound by 5ulp
on the result. So, to calculate the size of intermediary variables, we have to add, at least, 3
bits the wanted precision.

4.21. The power function. The mpfr pow function implements the power function as:

pow(x, y) = ey log(x).

The algorithm used for this calculation is as follows:

u ← ◦(log(x))
v ← ◦(yu)
w ← ◦(ev)

Now, we have to bound the rounding error for each step of this algorithm with x ≥ 0 and
y is a floating number.

error(u)
u ←
◦(log(x))

|u− log(x)| ≤ ulp(u) ⋆

error(v)
v ←△(y× u)
(•)

|v − y log(x)| ≤ ulp(v) + |yu− y log(x)|
≤ ulp(v) + y|u− log(x)|
≤ ulp(v) + yulp(u)

≤ ulp(v) + 2ulp(yu) (⋆)

≤ 3ulp(v) (⋆⋆)

(⋆)
with [Rule 6]
(⋆)
with [Rule 3]

error(w)
w ← ◦(ev) |w − ev| ≤ (1 + 3 · 2exp(v)+1)ulp(w)

(⋆) see subsection 2.8
with c∗u = 1 for (•)

That shows the rounding error on the calculation of xy can be bounded by 1+3 · 2exp(v)+1

ulps on the result. So, to calculate the size of intermediary variables, we have to add, at
least, ⌈log2(1 + 3 · 2exp(v)+1)⌉ bits to the wanted precision.
Exact results. We have to detect cases where xy is exact, otherwise the program will loop
forever. The theorem from Gelfond/Schneider (1934) states that if α and β are algebraic
numbers with α ̸= 0, α ̸= 1, and β /∈ Q, then αβ is transcendental. This is of little help for us
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since β will always be a rational number. Let x = a2b, y = c2d, and assume xy = e2f , where
a, b, c, d, e, f are integers. Without loss of generality, we can assume a, c, e odd integers.

If x is negative: either y is integer, then xy is exact if and only if (−x)y is exact; or y is
rational, then xy is a complex number, and the answer is NaN (Not a Number). Thus we
can assume a (and therefore e) positive.
If y is negative, then xy = ay2by can be exact only when a = 1, and in that case we also

need that by is an integer.
We have ac2

d
2bc2

d
= e2f with a, c, e odd integers, and a, e > 0. As a is an odd integer,

necessarily we have ac2
d
= e and 2bc2

d
= 2f , thus bc2d = f .

If d ≥ 0, then ac must be an integer: this is true if c ≥ 0, and false for c < 0 since
ac2

d
= 1

a−c2d
< 1 cannot be an integer. In addition ac2

d
must be representable in the given

precision.

Assume now d < 0, then ac2
d
= ac1/2

d′
with d′ = −d, thus we have ac = e2

d′
, thus ac must

be a 2d
′
-th power of an integer. Since c is odd, a itself must be a 2d

′
-th power.

We therefore propose the following algorithm:

Algorithm CheckExactPower.
Input: x = a2b, y = c2d, a, c odd integers
Output: true if xy is an exact power e2f , false otherwise
if x < 0 then

if y is an integer then return CheckExactPower(−x, y)
else return false

if y < 0 then
if a = 1 then return true else return false

if d < 0 then
if a2b is not a 2−d power then return false

return true

Detecting if the result is exactly representable is not enough, since it may be exact, but
with a precision larger than the target precision. Thus we propose the following: modify
Algorithm CheckExactPower so that it returns an upper bound p for the number of significant
bits of xy when it is exactly representable, i.e. xy = m ·2e with |m| < 2p. Then if the relative
error on the approximation of xy is less than 1

2
ulp, then rounding it to nearest will give xy.

4.22. The integer power. The integer power mpfr pow ui is computed as follows. We
compute an approximation of xn by binary exponentiation. The error analysis for binary
exponentiation is the same as if we did naive exponentiation, computing x2, x3, ..., xn−1, xn

with n− 1 successive multiplications, and Lemma 1 gives the error bound.

4.23. The real cube root. The mpfr cbrt function computes the real cube root of x. Since
for x < 0, we have 3

√
x = − 3

√
−x, we can focus on x > 0.

Let n be the number of wanted bits of the result. We write x = m·23e wherem is a positive
integer with m ≥ 23n−3. Then we compute the integer cubic root of m: let m = s3 + r with
0 ≤ r and m < (s+1)3. Let k be the number of bits of s: since m ≥ 23n−3, we have s ≥ 2n−1

thus k ≥ n. If k > n, we replace s by ⌊s2n−k⌋, e by e+ (k− n), and update r accordingly so
that x = (s3 + r)23e still holds (be careful that r may no longer be an integer in that case).
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Then the correct rounding of 3
√
x is:

s2e if r = 0 or round down or round nearest and r < 3
2
s2 + 3

4
s+ 1

8
,

(s+ 1)2e otherwise.

Note: for rounding to nearest, one may consider m ≥ 23n instead of m ≥ 23n−3, i.e. taking
n+1 instead of n. In that case, there is no need to compare the remainder r to 3

2
s2+ 3

4
s+ 1

8
:

we just need to know whether r = 0 or not. The even rounding rule is needed only when the
input x has at least 3n + 1 bits, since the cube of a odd number of n + 1 bits has at least
3n+ 1 bits.

4.24. The k-th root. The k-th root mpfr root of x > 0 is computed as follows. First write
x = m · 2e with m and e integers, e multiple of k. If m < 2k(p−1), where p is the target
precision — plus 1 for rounding to nearest —, we multiply m by 2kt for some integer t > 0
and subtract kt from e such that 2k(p−1) ≤ m ·2kt < 2kp, i.e., the integer square root of m ·2kt
has exactly p bits.
We thus now have x = m · 2e where 2k(p−1) ≤ m and e multiple of k. We then call the

mpz root function from GMP, which computes s such that sk ≤ m < (s+1)k, and tells us if
the left equality holds or not (this gives the round bit for directed rounding, and the sticky
bit for rounding to nearest, in which case the round bit is the least significant bit of s). If s
has more than p bits, the round and sticky bits can both be determined from the low bits
of s.

Note: this algorithm is inefficient since it deals with intermediate values of O(kp) bits.

4.25. The exponential integral. The exponential integral mpfr_eint is defined as in [1,
formula 5.1.10]: for x > 0,

Ei(x) = γ + log x+
∞∑
k=1

xk

k k!
,

and for x < 0 it gives NaN.

We use the following integer-based algorithm to evaluate
∑∞

k=1
xk

k k!
, using working precision

w. For any real v, we denote by trunc(v) the nearest integer toward zero.

Approximate x by m · 2e with m an integer
having exactly w bits, such that |x−m · 2e| ≤ 2e

s← 0
t← 2w

for k := 1 do
t← trunc(tm2e/k)
u← trunc(t/k)
s← s+ u

Return s · 2−w.

Note: in t ← trunc(tm2e/k), we first compute tm exactly, then if e is negative, we first
divide by 2−e and truncate, then divide by k and truncate; this gives the same answer than
dividing once by k2−e, but it is more efficient. Let ϵk be the absolute difference between t
and 2wxk/k! at step k. We have ϵ0 = 0, and ϵk ≤ 1 + ϵk−1m2e/k+ tk−1m2e+1−w/k, since the
error when approximating x by m2e is less than 2e ≤ m2e+1−w. Similarly, the absolute error
on u at step k is at most νk ≤ 1 + ϵk/k, and that on s at most τk ≤ τk−1 + νk. We compute
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all these errors dynamically (using MPFR with a small precision), and we stop when |t| is
smaller than the bound τk on the error on s made so far.

At that time, the truncation error when neglecting terms of index k + 1 to ∞ can be
bounded by (|t|+ ϵk)/k(|x|/k + |x|2/k2 + · · · ) ≤ (|t|+ ϵk)|x|/k/(k − |x|).

Asymptotic Expansion. For x → ∞ we have the following non-converging expansion [1,
formula 5.1.51]:

Ei(x) ∼ ex(
1

x
+

1

x2
+

2

x3
+

6

x4
+

24

x5
+ · · · ).

The kth is of the form k!x−k−1. The smallest value is obtained for k ≈ x, and is of the order
of e−x. Thus assuming the error term is bounded by the first neglected term, we can use
that expansion as long as e−x ≤ 2−p where p is the target precision, i.e. when x ≥ p log 2.

For x < 0, the function mpfr_eint returns the value of E1(−x), defined by [1, formula
5.1.11]:

E1(x) = −γ − log(x)−
∞∑
k=1

(−x)k

k k!
.

We use the very same algorithm and error analysis as above (including the asymptotic
expansion).

4.26. The gamma function. The gamma function is computed by Spouge’s method [26]:

Γ(z + 1) ≈ (z + a)z+1/2e−z−a

√2π +

⌈a⌉−1∑
k=1

ck(a)

z + k

 ,
which is valid for ℜ(z + a) > 0, where

ck(a) =
(−1)k−1

(k − 1)!
(a− k)k−1/2ea−k.

Here, we choose the free parameter a to be an integer.
According to [22, Section 2.6], the relative error is bounded by a−1/2(2π)−a−1/2 for a ≥ 3

and ℜ(z) ≥ 0. See also [25].

4.27. The incomplete gamma function. The incomplete gamma function is defined for
x ≥ 0 as (it can be defined by continuity for a being zero or a negative integer):

Γ(a, x) =

∫ ∞

x

ta−1 exp(−t) dt = Γ(a)− γ(a, x),

with the complementary incomplete gamma function γ(a, x) defined by:

γ(a, x) =

∫ x

0

ta−1 exp(−t) dt,

satisfying the two Taylor expansions [1, formula 6.5.29]:

γ(a, x) = xa
∞∑
k=0

(−x)k

(a+ k)k!
= xa exp(−x)

∞∑
k=0

xk

a(a+ 1) · · · (a+ k)
.
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We use the second expansion, and we stop adding terms of the series when the current term
is less than one ulp of the current sum, and |x/(a + k)| < 1/2. The last condition ensures
that the tail of the series is less than twice the current term, thus the approximated sum s
satisfies s = S(1 + θ)3 with S the exact sum, and |θ| < 2−w with w the working precision.
If the series was computed up to index k, the error on γ(a, x) is less than 4k + 14 ulps.
Subtracting from Γ(a) can yield a huge cancellation: we take into account the exact error
bound, which is deduced from the different exponents involved. Further details can be found
in the source code.

For negative integers a we use the following formula [1, formula 6.5.19]:

Γ(−n, x) = (−1)n

n!
[E1(x)− e−x

n−1∑
j=0

(−1)j j!
xj+1

].

4.27.1. Legendre’s continued fraction. In [9], Gautschi discusses the computation of Γ(a, x)
with Legendre’s continued fraction:

x−aexΓ(a, x) =
1

x+

1− a
1+

1

x+

2− a
x+

2

x+
· · ·

where by contracting two consecutive terms we get:

(7) x−aexΓ(a, x) =
∞∑
k=0

tk,

with tk = ρ0ρ1 · · · ρk, ρ0 = 1, σ0 = 1, and for k ≥ 1, ρk = −akσk−1/(1 + akσk−1), σk =
1/(1 + akσk−1), and:

ak =
k(a− k)

(x+ 2k − 1− a)(x+ 2k + 1− a)
.

Gautschi proves that when x ≥ 1/4 and a ≤ x + 1/4, then |ρk| ≤ 1 for all k ≥ 1. However,
this is not enough to bound the tail of the above series.

We consider here the case where a ≤ −1, thus ak ≤ 0 (remember Γ(a, x) is only defined
for x ≥ 0). When k goes to infinity, ak = −1/4 + x/(4k) + O(1/k2). We prove that for
k ≥ 2max(x, |a|), we have ak ≥ −1/4 + x/(8k). Indeed,

ak +
1

4
− x

8k
=
x(4k2 − 2kx+ 2xa− x2 − a2 + 1) + 2k(a2 − 1)

8k(x+ 2k − 1− a)(x+ 2k + 1− a)
.

The denominator is positive for k ≥ 1 as long as x−a+1 > 0, which holds since we assumed
a ≤ −1. The second term 2k(a2 − 1) in the numerator is non-negative since a ≤ −1; the
factor of x in the first term satisfies since k ≥ x:

4k2 − 2kx+ 2xa− x2 − a2 + 1 ≥ 4k2 − 2kx− 2k|a| − x2 − a2 + 1.

Since the right-hand side is symmetric in x and |a|, we can assume without loss of generality
that x ≥ |a|. Then 4k2−2kx+2xa−x2−a2+1 ≥ 4k2−4kx−2x2+1 = (2k−x)2−3x2+1,
which is positive when k ≥ 2x.
Since ak ≥ −1/4 + x/(8k), we have −1/4 ≤ ak ≤ 0, and since σk = 1/(1 + akσk−1) with

σ0 = 1, it follows by induction that 1 ≤ σk ≤ 2 for all k ≥ 0. It yields for a ≤ −1 and
k ≥ 2max(x, |a|):

ρk =
−akσk−1

1 + akσk−1

≤ −4ak ≤ 1− x/(2k).
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Assume now that we stop the series computation in Eq. (7) after tk. The neglected part
is:

tk(ρk+1 + ρk+1ρk+2 + ρk+1ρk+2ρk+3 + · · · ).
Let uk,ℓ := ρkρk+1 · · · ρℓ. Since ρj ≤ 1− x/(2j) and log(1− u) ≤ −u for 0 < u < 1:

log uk,ℓ =
ℓ∑

j=k

log ρj ≤
ℓ∑

j=k

log(1− x

2j
) ≤ −x

ℓ∑
j=k

1

2j
= −x

2
(ψ(ℓ+ 1)− ψ(k + 1)).

Using log(t− 1) ≤ ψ(t) ≤ log t yields:

log uk,ℓ ≤
x

2
(log(k + 1)− log(ℓ)).

Now since ρk < 1:

ρk + ρkρk+1 + ρkρk+1ρk+2 + · · · ≤ 1 +
∞∑

ℓ=k+1

uk,ℓ ≤ 1 +
∞∑
j=1

exp(
x

2
log

k + 1

k + j
).

We split the sum into blocks of k + 1 consecutive terms:

∞∑
ℓ=k+1

uk,ℓ ≤
∞∑
j=1

(
k + 1

k + j

)x/2

≤ (k + 1)

(
k + 1

k + 1

)x/2

+ (k + 1)

(
k + 1

2k + 2

)x/2

+ (k + 1)

(
k + 1

3k + 3

)x/2

+ · · ·

≤ (k + 1)(1 + (1/2)x/2 + (1/3)x/2 + · · · ) = (k + 1)ζ(x/2).

Lemma 6. Assume a ≤ −1, and we stop the series computation in Eq. (7) after tk, with
k ≥ 2max(x, |a|). Then the error on the sum of the right hand side of Eq. (7) is bounded by

tk(1 + (k + 1)ζ(x/2)).

4.28. The Riemann Zeta function.

4.28.1. Special cases. As usual, special inputs are first taken into account: NaN, infinities,
zeros, but also values close enough to 0 (see below), even negative integers, and 1 (pole).

Let us focus on ζ(s), where s has a small exponent. In theory, this case could be handled
by the reflection formula (§4.28.3), but as the term ζ(1 − s) of this formula is close to the
pole of ζ at 1, this method would be slow (and could even yield an internal overflow for tiny
s), while the correctly rounded result can be determined very quickly when s is close enough
to 0. We have around 0:

ζ(s) = −1

2
− 1

2
log(2π)s+ . . .

and for |s| ≤ 2−4, we have |ζ(s) + 1/2| ≤ |s|. Thus if |s| ≤ 2−4 and |s| ≤ 1
4
ulp(1/2) in the

target precision p, we can deduce the correct rounding for any rounding mode. The second
condition can be rewritten: |s| ≤ 2−2−p. For p ≥ 2, the second condition implies the first
one, and it is sufficient to have exp(s) ≤ −2− p. For p = 1, if we assume exp(s) ≤ −2− p,
then |s| ≤ 1

2
2−2−p = 2−4, so that both conditions are also satisfied. Thus, for any target

precision p ≥ 1, a sufficient condition is exp(s) ≤ −2− p, or equivalently exp(s) + 1 < −p.
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4.28.2. Case s ≥ 1/2. The algorithm for the Riemann Zeta function for s ≥ 1/2 is due to
Jean-Luc Rémy and Sapphorain Pétermann [20, 21]. We use the Euler-MacLaurin summa-
tion formula, applied to the real function f(x) = x−s for s > 1:

ζ(s) =
N−1∑
k=1

1

ks
+

1

2N s
+

1

(s− 1)N s−1
+

p∑
k=1

B2k

2k

(
s+ 2k − 2

2k − 1

)
1

N s+2k−1
+RN,p(s),

with |RN,p(s)| < 2−d, where Bk denotes the kth Bernoulli number,

p = max

(
0, ⌈d log 2 + 0.61 + s log(2π/s)

2
⌉
)
,

and N = ⌈2(d−1)/s⌉ if p = 0, N = ⌈ s+2p−1
2π
⌉ if p > 0.

This computation is split into three parts:

A =
N−1∑
k=1

k−s +
1

2
N−s,

B =

p∑
k=1

Tk = N−1−ss

p∑
k=1

CkΠkN
−2k+2,

C =
N−s+1

s− 1
,

where Ck =
B2k

(2k)!
, Πk =

∏2k−2
j=1 (s+ j), and Tk = N1−2k−sCkΠk.

Rémy and Pétermann proved the following result:

Theorem 1. Let d be the target precision so that |RN,p(s)| < 2−d. Assume Π = d− 2 ≥ 11,
i.e. d ≥ 13. If the internal precisions for computing A, B, C satisfy respectively

DA ≥ Π+ ⌈3
2

logN

log 2
⌉+ 5, DB ≥ Π+ 14, DC ≥ Π+ ⌈1

2

logN

log 2
⌉+ 7,

then the relative round-off error is bounded by 2−Π, i.e. if z is the approximation computed,
we have

|ζ(s)− z| ≤ 2−Π|ζ(s)|.

4.28.3. Case s < 1/2. For s < 1/2, we use the reflection formula:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s).

For simplicity, to avoid taking into account the error from the Γ and ζ inputs, we will
ensure that 1− s is represented exactly. Thus its precision may need to be much larger than
the target precision. However, for efficiency reasons, the internal working precision q will
still be based only on the target precision as usual.

So, assuming that no underflows nor overflows occur, the terms Γ(1− s) and ζ(1− s) will
each have an error factor of the form 1 + θ, with |θ| ≤ 2−q.

Assuming that Γ and ζ have a larger complexity than the other terms, we would like the
other error factors not to be significantly larger than 1 + 2−q. Otherwise we would have
wasted time by computing Γ(1− s) and ζ(1− s) with more precision than really needed.
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Concerning the term πs−1, if the constant π is represented by a variable x with a precision
px to the nearest, then (1− 2−px)x ≤ π ≤ (1 + 2−px)x. So,

(1 + 2−px)s−1xs−1 ≤ πs−1 ≤ (1− 2−px)s−1xs−1,

i.e.,
(1− 2−px)1−sπs−1 ≤ xs−1 ≤ (1 + 2−px)1−sπs−1.

We want (1− s)2−px to be small and of the order of 2−q. We will choose px = q−exp(1− s),
so that (1 − s)2−px < 2−q. The value xs−1 will be computed and rounded to the working
precision by the mpfr pow function, giving another error term of the form 1+θ, with |θ| ≤ 2−q.

Concerning the term sin
(
πs
2

)
, because of the factor π in the argument, we will do the

range reduction ourselves: it will much simpler and faster than the one in mpfr sin, and
this will allow us to select the intermediate precision more accurately.

(WORK IN PROGRESS – May not correspond to the implementation yet.)

4.28.4. The integer argument case. In case of an integer argument s ≥ 2, the mpfr zeta ui

function computes ζ(s) using the following formula from [4]:

ζ(s) =
1

dn(1− 21−s)

n−1∑
k=0

(−1)k(dn − dk)
(k + 1)s

+ γn(s),

where

|γn(s)| ≤
3

(3 +
√
8)n

1

1− 21−s
and dk = n

k∑
i=0

(n+ i− 1)!4i

(n− i)!(2i)!
.

It can be checked that the dk are integers, and we compute them exactly, like the denom-
inators (k + 1)s. We compute the integer

S =
n−1∑
k=0

(−1)k⌊ dn − dk
(k + 1)s

⌋.

The absolute error on S is at most n. We then perform the following iteration (still with
integers):

T ← S
do
T ← ⌊T21−s⌋
S = S + T

while T ̸= 0.

Since 1
1−21−s = 1 + 21−s + 22(1−s) + · · · , and at iteration i we have T = ⌊S2i(1−s)⌋, the error

on S after this loop is bounded by n+ l + 1, where l is the number of loops.
Finally we compute q = ⌊2pS

dn
⌋, where p is the working precision, and we convert q to a

p-bit floating-point value, with rounding to nearest, and divide by 2p (this last operation is
exact). The final error in ulps is bounded by 1+2µ(n+ l+2). Since S/dn approximates ζ(s),
it is larger than one, thus q ≥ 2p, and the error on the division is less that 1

2
ulpp(q). The

error on S itself is bounded by (n+ l+ 1)/dn ≤ (n+ l+ 1)21−p — see the conjecture below.
Since 21−p ≤ ulpp(q), and taking into account the error when converting the integer q (which

may have more than p bits), and the mathematical error which is bounded by 3
(3+

√
8)n
≤ 3

2p
,

the total error is bounded by n+ l + 4 ulps.
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Analysis of the sizes. To get an accuracy of around p bits, since ζ(s) ≥ 1, it suffices to have
|γn(s)| ≤ 2−p, i.e. (3 +

√
8)n ≥ 2p, thus n ≥ αp with α = log 2

log((3+
√
8)
≈ 0.393. It can be easily

seen that dn ≥ 4n, thus when n ≥ αp, dn has at least 0.786p bits. In fact, we conjecture
dn ≥ 2p−1 when n ≥ αp; this conjecture was experimentally verified up to p = 1000.
Large argument case. When 3−s < 2−p, then ζ(s) ≈ 1 + 2−s to a precision of p bits. More
precisely, let r(s) := ζ(s)− (1 + 2−s) = 3−s + 4−s + · · · . The function 3sr(s) = 1 + (3/4)s +
(3/5)s + · · · decreases with s, thus for s ≥ 2, 3sr(s) ≤ 32 · r(2) < 4. This yields:

|ζ(s)− (1 + 2−s)| < 4 · 3−s.

If the upper bound 4 · 3−s is less than 1
2
ulp(1) = 2−p, the correct rounding of ζ(s) is either

1 + 2−s for rounding to zero, −∞ or nearest, and 1 + 2−s + 21−p for rounding to +∞.

4.29. The arithmetic-geometric mean. The arithmetic-geometric mean (AGM for short)
of two positive numbers a ≤ b is defined to be the common limits of the sequences (an) and
(bn) defined by a0 = a, b0 = b, and for n ≥ 0:

an+1 =
√
anbn, bn+1 =

an + bn
2

.

We approximate AGM(a, b) as follows, with working precision p:

s1 = ◦(ab)
u1 = ◦(

√
s1)

v1 = ◦(a+ b)/2 [division by 2 is exact]
for n := 1 while exp(vn)− exp(vn − un) ≤ p− 2 do
vn+1 = ◦(un + vn)/2 [division by 2 is exact]
if exp(vn)− exp(vn − un) ≤ p/4 then
s = ◦(unvn)
un+1 = ◦(

√
s)

else
s = ◦(vn − un)
t = ◦(s2)/16 [division by 16 is exact]
w = ◦(t/vn+1)
return r = ◦(vn+1 − w)

endif

The rationale behind the if -test is the following. When the relative error between an and bn is
less than 2−p/4, we can write an = bn(1+ϵ) with |ϵ| ≤ 2−p/4. The next iteration will compute
an+1 =

√
anbn = bn

√
1 + ϵ, and bn+1 = (an + bn)/2 = bn(1 + ϵ/2). The second iteration

will compute an+2 =
√
an+1bn+1 = bn

√√
1 + ϵ(1 + ϵ/2), and bn+2 = (an+1 + bn+1)/2 =

bn(
√
1 + ϵ/2 + 1/2 + ϵ/4). When ϵ goes to zero, the following expansions hold:√√

1 + ϵ(1 + ϵ/2) = 1 +
1

2
ϵ− 1

16
ϵ2 +

1

32
ϵ3 − 11

512
ϵ4 +O(ϵ5)

√
1 + ϵ/2 + 1/2 + ϵ/4 = 1 +

1

2
ϵ− 1

16
ϵ2 +

1

32
ϵ3 − 5

256
ϵ4 +O(ϵ5),

which shows that an+2 and bn+2 agree to p bits. In the algorithm above, we have vn+1 ≈
bn(1 + ϵ/2), s = −bnϵ [exact thanks to Sterbenz theorem], then t ≈ ϵ2b2n/16, and w ≈

45



(bn/16)ϵ
2/(1 + ϵ/2) ≈ bn(ϵ

2/16 − ϵ3/32), thus vn+1 − w gives us an approximation to order
ϵ4. [Note that w — and therefore s, t — need to be computed to precision p/2 only.]

Lemma 7. Assuming u ≤ v are two p-bit floating-point numbers, then u′ = ◦(
√
◦(uv)) and

v′ = ◦(u+ v)/2 satisfy:
u ≤ u′, v′ ≤ v.

Proof. It is clear that 2u ≤ u + v ≤ 2v, and since 2u and 2v are representable numbers,
2u ≤ ◦(u+ v) ≤ 2v, thus u ≤ v′ ≤ v.
The result for u′ is more difficult to obtain. We use the following result: if x is a p-bit

number, s = ◦(x2), and t = ◦(
√
s) are computed with precision p and rounding to nearest,

then t = x.
Apply this result to x = u, and let s′ = ◦(uv). Then s = ◦(u2) ≤ s′, thus u = ◦(

√
s) ≤

◦(
√
s′) = u′. We prove similarly that u′ ≤ v. □

Remark. We cannot assume that u′ ≤ v′. Take for example u = 9, v = 12, with precision
p = 4. Then (u+ v)/2 rounds to 10, whereas

√
uv rounds to 112, and

√
112 rounds to 11.

We use Higham error analysis method, where θ denotes a generic value such that |θ| ≤ 2−p.
We note an and bn the exact values we would obtain for un and vn respectively, without round-
off errors. We have s1 = ab(1 + θ), u1 = a1(1 + θ)3/2, v1 = b1(1 + θ). Assume we can write
un = an(1 + θ)α and vn = bn(1 + θ)β with α, β ≤ en. We thus can take e1 = 3/2. Then as
long as the if -condition is not satisfied, vn+1 = bn+1(1+θ)

en+1, and un+1 = an+1(1+θ)
en+3/2,

which proves that en ≤ 3n/2.
When the if -condition is satisfied, we have exp(vn − un) < exp(vn) − p/4, and since

exponents are integers, thus exp(vn− un) ≤ exp(vn)− (p+1)/4, i.e. |vn− un|/vn < 2(3−p)/4.
Assume n ≤ 2p/4, which implies 3n|θ|/2 ≤ 1, which since n ≥ 1 implies in turn |θ| ≤ 2/3.

Under that hypothesis, (1+θ)3n/2 can be written 1+3nθ (possibly with a different |θ| ≤ 2−p

as usual). Then |bn − an| = |vn(1 + 3nθ)− un(1 + 3nθ′)| ≤ |vn − un|+ 3n|θ|vn.
For p ≥ 4, 3n|θ| ≤ 3/8, and 1/(1 + x) for |x| ≤ 3/8 can be written 1 + 5x′/3 for x′ in the

same interval. This yields:

|bn − an|
bn

=
|vn − un|+ 3n|θ|vn

vn(1 + 3nθ)
≤ |vn − un|

vn
+ 5n|θ| |vn − un|

vn
+

8

5
(6nθ)

≤ 13

8
· 2(3−p)/4 +
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5
· 2−3p/4 ≤ 5.2 · 2−p/4.

Write an = bn(1+ ϵ) with |ϵ| ≤ 5.2 · 2−p/4. We have an+1 = bn
√
1 + ϵ and bn+1 = bn(1+ ϵ/2).

Since
√
1 + ϵ = 1 + ϵ/2 − 1

8
ν2 with |ν| ≤ |ϵ|, we deduce that |bn+1 − an+1| ≤ 1

8
ν2|bn| ≤

3.38 ·2−p/2bn. After one second iteration, we get similarly |bn+2−an+2| ≤ 1
8
(3.38 ·2−p/2)2bn ≤

3
2
2−pbn.
Let q be the precision used to evaluate s, t and w in the else case. Since |vn − un| ≤

2(3−p)/4vn, it follows |s| ≤ 1.8 · 2−p/4vn for q ≥ 4. Then t ≤ 0.22 · 2−p/2vn. Finally due to the
above Lemma, the difference between vn+1 and vn is less than that between un and vn, i.e.
vn

vn+1
≤ 1

1−2(3−p)/4 ≤ 2 for p ≥ 7. We deduce w ≤ 0.22 · 2−p/2 v2n
vn+1

(1 + 2−q) ≤ 0.47 · 2−p/2vn ≤
0.94 · 2−p/2vn+1.
The total error is bounded by the sum of four terms:

• the difference between an+2 and bn+2, bounded by 3
2
2−pbn;
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• the difference between bn+2 and vn+2, if vn+2 was computed directly without the
final optimization; since vn+2 = bn+2(1 + θ)3(n+2)/2, if n + 2 ≤ 2p/4, similarly as
above, (1+ θ)3(n+2)/2 can be written 1+3(n+2)θ, thus this difference is bounded by
3(n+ 2) · 2−pbn+2 ≤ 3(n+ 2) · 2−pbn;
• the difference between vn+2 computed directly, and with the final optimization. We
can assume vn+2 is computed directly in infinite precision, since we already took into
account the rounding errors above. Thus we want to compute the difference between

√
unvn +

un+vn
2

2
and

un + vn
2

− (vn − un)2

8(un + vn)
.

Writing un = vn(1 + ϵ), this simplifies to:
√
1 + ϵ+ 1 + ϵ/2

2
−
(
1 + ϵ/2

2
− ϵ2

18 + 8ϵ

)
=
−1
256

ϵ4 +O(ϵ5).

For |ϵ| ≤ 1/2, the difference is bounded by 1
100
ϵ4vn ≤ 1

100
23−pvn.

• the round-off error on w, assuming un and vn are exact; we can write s = (vn −
un)(1 + θ), t = 1

16
(vn − un)2(1 + θ)2, w = (vn−un)2

16vn+1
(1 + θ)4. For q ≥ 4, (1 + θ)4 can be

written 1 + 5θ, thus the round-off error on w is bounded by 5θw ≤ 4.7 · 2−p/2−qvn+1.
For q ≥ p/2, this gives a bound of 4.7 · 2−pvn+1.

Since bn = vn(1 + 3nθ), and we assumed 3n|θ|/2 ≤ 1, we have bn ≤ 3vn, thus the first two
errors are less than (9n + 45/2)2−pvn; together with the third one, this gives a bound of
(9n + 23)2−pvn; finally since we proved above that vn ≤ 2vn+1, this gives a total bound of
(18n+ 51)2−pvn+1, which is less than (18n+ 51)ulp(r), or twice this in the improbable case
where there is an exponent loss in the final subtraction r = ◦(vn+1 − w).

4.30. The Bessel functions.

4.30.1. Bessel function Jn(z) of first kind. The Bessel function Jn(z) of first kind and integer
order n is defined as follows [1, Eq. (9.1.10)]:

(8) Jn(z) = (z/2)n
∞∑
k=0

(−z2/4)k

k!(k + n)!
.

It is real for all real z, tends to 0 by oscillating around 0 when z → ±∞, and tends to 0
when z → 0, except J0 which tends to 1.
We use the following algorithm, with working precision w, and rounding to nearest. Warn-

ing! This algorithm assumes that no underflows/overflows occur.

x← ◦(zn)
y ← ◦(z2)/4 [division by 4 is exact]
u← ◦(n!)
t← ◦(x/u)/2n [division by 2n is exact]
s← t
for k from 1 do
t← − ◦ (ty)
t← ◦(t/k)
t← ◦(t/(k + n))
s← ◦(s+ t)
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if |t| < ulp(s) and z2 ≤ 2k(k + n) then return s.

The condition z2 ≤ 2k(k + n) ensures that the next term of the expansion is smaller than
|t|/2, thus the sum of the remaining terms is smaller than |t| < ulp(s). Using Higham’s
method, with θ denoting a random variable of value |θ| ≤ 2−w — different instances of θ
denoting different values — we can write x = zn(1 + θ), y = z2/4(1 + θ), and before the
for-loop s = t = (z/2)n/n!(1 + θ)3. Now write t = (z/2)n(−z2/4)k/(k!(k + n)!)(1 + θ)ek

at the end of the for-loop with index k; each loop involves a factor (1 + θ)4, thus we have
ek = 4k + 3. Now let T be an upper bound on the values of |t| and |s| during the for-loop,
and assume we exit at k = K. The roundoff error in the additions ◦(s + t), including the
error in the series truncation, is bounded by (K/2+ 1)ulp(T ). The error in the value of t at
step k is bounded by ϵk := T |(1 + θ)4k+3 − 1|; if we assume (4k + 3)2−w ≤ 1/2, Lemma 2
yields ϵk ≤ 2T (4k + 3)2−w. Summing from k = 0 to K, this gives an absolute error bound
on s at the end of the for-loop of:

(K/2 + 1)ulp(T ) + 2(2K2 + 5K + 3)2−wT ≤ (4K2 + 21/2K + 7)ulp(T ),

where we used 2−wT ≤ ulp(T ).
Large index n. For large index n, formula 9.1.62 from [1] gives |Jn(z)| ≤ |z/2|n/n!. Together
with n! ≥

√
2πn(n/e)n, which follows from example from [1, Eq. 6.1.38], this gives:

|Jn(z)| ≤
1√
2πn

( ze
2n

)n
.

Large argument. For large argument z, formula (8) requires at least k ≈ z/2 terms before
starting to converge. If k ≤ z/2, it is better to use formula 9.2.5 from [1], which provides at
least 2 bits per term:

Jn(z) =

√
2

πz
[P (n, z) cosχ−Q(n, z) sinχ],

where χ = z − (n/2 + 1/4)π, and P (n, z) and Q(n, z) are two diverging series:

P (n, z) ≈
∞∑
k=0

(−1)kΓ(1/2 + n+ 2k)(2z)−2k

(2k)!Γ(1/2 + n− 2k)
, Q(n, z) ≈

∞∑
k=0

(−1)kΓ(1/2 + n+ 2k + 1)(2z)−2k−1

(2k + 1)!Γ(1/2 + n− 2k − 1)
.

If n is real and nonnegative — which is the case here —, the remainder of P (n, z) after k
terms does not exceed the (k + 1)th term and is of the same sign, provided k > n/2− 1/4;
the same holds for Q(n, z) as long as k > n/2− 3/4 [1, 9.2.10].
If we first approximate χ = z − (n/2 + 1/4)π with working precision w, and then approx-

imate cosχ and sinχ, there will be a huge relative error if z > 2w. Instead, we use the fact
that for n even,

P (n, z) cosχ−Q(n, z) sinχ =
1√
2
(−1)n/2[P (n, z)(sin z + cos z) +Q(n, z)(cos z − sin z)],

and for n odd,

P (n, z) cosχ−Q(n, z) sinχ =
1√
2
(−1)(n−1)/2[P (n, z)(sin z − cos z) +Q(n, z)(cos z + sin z)],

where cos z and sin z are computed accurately with mpfr sin cos, which uses in turn
mpfr remainder.
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If we consider P (n, z) and Q(n, z) together as one single series, its term of index k behaves
like Γ(1/2+ n+ k)/k!/Γ(1/2+ n− k)/(2z)k. The ratio between the term of index k+1 and
that of index k is about k/(2z), thus starts to diverge when k ≈ 2z. At that point, the kth
term is ≈ e−2z, thus if z > p/2 log 2, we can use the asymptotic expansion.

4.30.2. Bessel function Yn(z) of second kind. Like Jn(z), Yn(z) is a solution of the linear
differential equation:

z2y′′ + zy′ + (z2 − n2)y = 0.

We have Y−n(z) = (−1)nYn(z) according to [1, Eq. (9.1.5)]; we now assume n ≥ 0. When
z → 0+, Yn(z) tends to −∞; when z → +∞, Yn(z) tends to 0 by oscillating around 0 like
Jn(z). We deduce from [27, Eq. (9.23)]:

Yn(−z) = (−1)n[Yn(z) + 2iJn(z)],

which shows that for z > 0, Yn(−z) is real only when z is a zero of Jn(z); assuming those
zeroes are irrational, Yn(z) is thus NaN for z negative.
Formula 9.1.11 from [1] gives:

Yn(z) = −(z/2)−n

π

n−1∑
k=0

(n− k − 1)!

k!
(z2/4)k +

2

π
log(z/2)Jn(z)

− (z/2)n

π

∞∑
k=0

(ψ(k + 1) + ψ(n+ k + 1))
(−z2/4)k

k!(n+ k)!
,

where ψ(1) = −γ, γ being Euler’s constant (see §5.2), and ψ(n+1) = ψ(n)+ 1/n for n ≥ 1.
Rewriting the above equation, we get

πYn(z) = −(z/2)−nS1 + S2 − (z/2)nS3,

where S1 =
∑n−1

k=0
(n−k−1)!

k!
(z2/4)k is a finite sum, S2 = 2(log(z/2) + γ)Jn(z), and S3 =∑∞

k=0(hk + hn+k)
(−z2/4)k

k!(n+k)!
, where hk = 1+ 1/2+ · · ·+1/k is the kth harmonic number. Once

we have estimated −(z/2)−nS1+S2, we know to which relative precision we need to estimate
the infinite sum S3. For example, if (z/2)n is small, typically a small relative precision on
S3 will be enough.

We use the following algorithm to estimate S1, with working precision w and rounding to
nearest:

y ← ◦(z2)/4 [division by 4 is exact]
f ← 1 [as an exact integer]
s← 1
for k from n− 1 downto 0 do
s← ◦(ys)
f ← (n− k)(k + 1)f [n!(n− k)!k! as exact integer]
s← ◦(s+ f)

f ←
√
f [integer, exact]

s← ◦(s/f)
Let (1+θ)ϵj−1 be the maximum relative error on s after the look for k = n−j, 1 ≤ j ≤ n, i.e.,
the computed value is sk(1 + θ)ϵj where sk would be the value computed with no roundoff
error, and |θ| ≤ 2−w. Before the loop we have ϵ0 = 0. After the instruction s ← ◦(ys)
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the relative error can be written (1 + θ)ϵj−1+2 − 1, since y = z2/4(1 + θ′) with |θ′| ≤ 2−w,
and the product involves another rounding error. Since f is exact, the absolute error after
s← ◦(s+f) can be written |smax||(1+θ)ϵj−1+3−1|, where |smax| is a bound for all computed
values of s during the loop. The absolute error at the end of the for-loop can thus be
written |smax||(1 + θ)3n − 1|, and |smax||(1 + θ)3n+1 − 1| after the instruction s ← ◦(s/f).
If (3n + 1)2−w ≤ 1/2, then using Lemma 2, |(1 + θ)3n+1 − 1| ≤ 2(3n + 1)2−w. Let e be
the exponent difference between the maximum value of |s| during the for-loop and the final
value of s, then the relative error on the final s is bounded by

(3n+ 1)2e+1−w.

Assuming we compute (z/2)n with correct rounding — using for example the mpfr pow ui

function — and divide S1 by this approximation, the relative error on (z/2)−nS1 will be at
most (3n+ 3)2e+1−w.
The computation of S2 is easier, still with working precision w and rounding to nearest:

t← ◦(log(z/2))
u← ◦(γ)
v ← 2 ◦ (t+ u) [multiplication by 2 is exact]
x← ◦(Jn(z))
s← ◦(vx)

Since z/2 is exact, the error on t and u is at most one ulp, thus from §2.3 the ulp-error on v
is at most 1/2 + 2exp(t)−exp(v) + 2exp(u)−exp(v) ≤ 1/2 + 2e+1, where e = max(exp(t),exp(u))−
exp(v). Assuming e + 2 < w, then 1/2 + 2e+1 ≤ 2w−1, thus the total error on v is bounded
by |v|, thus we can take c+ = 2 for v in the product s ← ◦(vx) (cf §2.4); similarly c+ = 2
applies to x← ◦(Jn(z)), thus §2.4 yields the following bound for the ulp-error on s:

1/2 + 3(1/2 + 2e+1) + 3(1/2) = 7/2 + 3 · 2e+1 ≤ 2e+4.

(Indeed, the smallest possible value of e is −1.)
The computation of S3 mimics that of Jn(z). The only difference is that we have to

compute the extra term hk + hn+k, that we maintain as an exact rational p/q, p and q being
integers:

x← ◦(zn)
y ← ◦(z2)/4 [division by 4 is exact]
u← ◦(n!)
t← ◦(x/u)/2n [division by 2n is exact]
p/q ← hn [exact rational]
u← ◦(pt)
s← ◦(u/q)
for k from 1 do
t← − ◦ (ty)
t← ◦(t/k)
t← ◦(t/(k + n))
p/q ← p/q + 1/k + 1/(n+ k) [exact]
u← ◦(pt)
u← ◦(u/q)
s← ◦(s+ u)
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if |u| < ulp(s) and z2 ≤ 2k(k + n) then return s.

Using (hk+1+hn+k+1)k ≤ (hk+hn+k)(k+1), which is true for k ≥ 1 and n ≥ 0, the condition
z2 ≤ 2k(k+n) ensures that the next term of the expansion is smaller than |t|/2, thus the sum
of the remaining terms is smaller than |t| < ulp(s). The difference with the error analysis
of Jn is that here ek = 6k + 5 instead of ek = 4k + 3. Denote U an upper bound on the
values of u, s during the for-loop — note that |u| ≥ |t| by construction — and assume we
exit at k = K. The error in the value of u at step k is bounded by ϵk := U |(1 + θ)6k+5 − 1|;
Assuming (6k+5)2−w ≤ 1/2, Lemma 2 yields ϵk ≤ 2U(6k+5)2−w, and the sum from k = 0
to K gives an absolute error bound on s at the end of the for-loop bounded by:

(K/2 + 1)ulp(U) + 2(3K2 + 8K + 5)2−wU ≤ (6K2 + 33/2K + 11)ulp(U),

where we used 2−wU ≤ ulp(U).

4.31. The Dilogarithm function. The mpfr li2 function computes the real part of the
dilogarithm function defined by:

Li2(x) = −
∫ x

0

log(1− t)
t

dt.

The above relation defines a multivalued function in the complex plane, we choose a branch
so that Li2(x) is real for x real, x < 1 and we compute only the real part for x real, x ≥ 1.
When x ∈]0, 1

2
], we use the series (see [28, Eq. (5)]):

Li2(x) =
∞∑
n=0

Bn

(n+ 1)!
(− log(1− x))n+1

where Bn is the n-th Bernoulli number.
Otherwise, we perform an argument reduction using the following identities (see [10]):

x ∈ [2,+∞[ ℜ(Li2(x)) = π2

3
− 1

2
log2(x)− Li2

(
1
x

)
x ∈]1, 2[ ℜ(Li2(x)) = π2

6
− log(x)

[
log(x− 1)− 1

2
log(x)

]
+ Li2

(
1− 1

x

)
Li2(1) = π2

6

x ∈
]
1
2
, 1
[

Li2(x) = π2

6
− log(x) log(1− x)− Li2(1− x)

Li2(0) = 0
x ∈ [−1, 0[ Li2(x) = −1

2
log2(1− x)− Li2

(
x

x−1

)
x ∈]−∞,−1[ Li2(x) = −π2

6
− 1

2
log(1− x)[2 log(−x)− log(1− x)] + Li2

(
1

1−x

)
.

Assume first 0 < x ≤ 1
2
, the odd Bernoulli numbers being zero (except B1 = −1

2
), we can

rewrite Li2(x) in the form:

Li2(x) = −
log2(1− x)

4
+ S(− log(1− x))

where

S(z) =
∞∑
k=0

B2k

(2k + 1)!
z2k+1.
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Let SN(z) =
∑

k≤N
B2k

(2k+1)!
z2k+1 the N -th partial sum, and RN(z) the truncation error. The

even Bernoulli numbers verify the following inequality for all n ≥ 1 ([1, Inequalities 23.1.15]):

2(2n)!

(2π)2n
< |B2n| <

2(2n)!

(2π)2n

(
1

1− 21−2n

)
,

so we have for all N ≥ 0

|B2N+2|
(2N + 3)!

|z|2N+3 <
2|z|

(1− 2−2N−1)(2N + 3)

∣∣∣ z
2π

∣∣∣2N+2

,

showing that S(z) converges for |z| < 2π. As the series is alternating, we then have an upper
bound for the truncation error |RN(z)| when 0 < z ≤ log 2:

|RN(z)| < 2exp(z)−6N−5.

The partial sum SN(z) computation is implemented as follows:

Algorithm li2 series

Input: z with z ∈]0, log 2]
Output: ◦(S(z))
u←△(z2)
v ←△(z)
s←△(z)
for k from 1 do
v ←△(uv)
v ←△(v/(2k))
v ←△(v/(2k))
v ←△(v/(2k + 1))
v ←△(v/(2k + 1))
w ← N (vB′

k)
s← N (s+ w)
if |w| < ulp(s) then return s.

where B′
k = B2k(2k + 1)! is an exact representation in mpn integers.

Let p the working precision. Using Higham’s method, before entering the loop we have
u = z2(1 + θ), v = s = z(1 + θ) where different instances of θ denote different variables and
|θ| ≤ 2−p. After the k-th loop, v = z2k+1/((2k+1)!2k(2k+1))(1+ θ)6k, w = B2kz

2k+1/(2k+
1)!(1 + θ)6k+1.
When x ∈]0, 1

2
], Li2(x) calculation is implemented as follows

Algorithm li2 0..+1
2

Input: x with x ∈
]
0, 1

2

]
, the output precision n, and a rounding mode ◦n

Output: ◦n(Li2(x))
u← N (1− x) error(u) ≤ 1

2
ulp(u)

u←△(− log(u)) error(u) ≤ (1 + 2−exp(u))ulp(u)
t←△(S(u)) error(t) ≤ (k + 1)21−exp(t)ulp(t)
v ←△(u2)
v ←△(v/4) error(v) ≤ (5 + 22−exp(u))ulp(v)
s← N (t− v) error(s) ≤ 2κsulp(s)
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if s cannot be exactly rounded according to the given mode ◦n
then increase the working precision and restart calculation
else return ◦n(s)

where κs = max(−1, ⌈log2(k + 1)⌉+ 1− exp(s),max(1,−exp(u))− 1− exp(s))
When x is large and positive, we can use an asymptotic expansion near +∞ using the fact

that Li2
(
1
x

)
= 1

x
+O

(
1
x2

)
(see below):

∣∣∣∣Li2(x) + log2 x

2
− π2

3

∣∣∣∣ ≤ 2

x

which gives the following algorithm:

Algorithm li2 asympt pos

Input: x with x ≥ 38, the output precision n, and a rounding mode ◦n
Output: ◦n(ℜ(Li2(x))) if it can round exactly, a failure indicator if not
u← N (log x)
v ← N (u2)
g ← N (v/2)
p← N (π)
q ← N (p2)
h← N (q/3)
s← N (g − h)
if s cannot be exactly rounded according to the given mode ◦n
then return failed
else return ◦p(n)

Else, if x ∈ [2, 38[ or if x ≥ 38 but the above calculation cannot give exact rounding, we
use the relation

Li2(x) = −S
(
− log(1− 1

x
)

)
+

log2
(
1− 1

x

)
4

− log2 x

2
+
π2

3
,

which is computed as follows:

Algorithm li2 2..+∞
Input: x with x ∈ [2,+∞[, the output precision n, and a rounding mode ◦n
Output: ◦n(ℜ(Li2(x)))
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y ← N (−1/x) error(y) ≤ 1
2
ulp(y)

u←△(− log(1 + y)) error(u) ≤ (1 + 21−exp(u))ulp(u)
q ← N (−S(u)) error(q) ≤ 2(k + 1)2−exp(q)ulp(q)
v ←△(u2)
v ←△(v/4) error(v) ≤ (5 + 23−exp(u))ulp(v)
r ← N (q + v) error(r) ≤ 2κrulp(r)
w ←△(log x)
w ← N (w2)
w ← N (w/2) error(w) ≤ 9

2
ulp(w)

s← N (r − w) error(s) ≤ 2κsulp(s)
p←△(π)
p← N (p2)
p← N (p/3) error(p) ≤ 19

2
ulp(p) ≤ 22−exp(p)ulp(p)

t← N (s+ p) error(t) ≤ 2κtulp(t)
if t can be exactly rounded according to ◦n
then return ◦n(t)
else increase working precision and restart calculation

with

κr = 2 +max(−1, ⌈log2(k + 1)⌉+ 1− exp(r), 3 + max(1,−exp(u)) + exp(v)− exp(r))

κs = 2 +max(−1, κr + exp(r)− exp(s), 3 + exp(w)− exp(s))

κt = 2 +max(−1, κs + exp(s)− exp(t), 2− exp(t))

When x ∈]1, 2[, we use the relation

Li2(x) = S(log x) +
log2 x

4
− log x log(x− 1) +

π2

6

which is implemented as follows

Algorithm li2 1..2

Input: x with x ∈]1, 2[, the output precision n, and a rounding mode ◦n
Output: ◦n(ℜ(Li2(x)))
l←△(log x) error(l) ≤ ulp(l)
q ← N (S(l)) error(q) ≤ (k + 1)21−exp(q)ulp(q)
u← N (l2)
u← N (u/4) error(u) ≤ 5

2
ulp(u)

r ← N (q + u) error(r) ≤ (3 + (k + 1)21−exp(q))ulp(r)
y ← N (x− 1) error(y) ≤ 1

2
ulp(y)

v ←△(log y) error(v) ≤ (1 + 2−exp(v))ulp(v)
w ← N (ul) error(w) ≤ (15

2
+ 21−exp(v))ulp(w)

s← N (r − w) error(s) ≤ (11 + (k + 1)21−exp(q) + 21−exp(v))ulp(s)
p←△(π)
p← N (p2)
p← N (p/6) error(p) ≤ 19

2
ulp(p)

t← N (s+ p) error(t) ≤ (31 + (k + 1)21−exp(q) + 21−exp(v))ulp(t)
if t can be exactly rounded according to ◦n
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then return ◦n(t)
else increase working precision and restart calculation

we use the fact that S(log x) ≥ 0 and u ≥ 0 for error(r), that r ≥ 0 and − log x log(x−1) ≥
0 for error(s), and that s ≥ 0 for error(t).

When x = 1, we have a simpler value Li2(1) =
π2

6
whose computation is implemented as

follows

Algorithm li2 1

Input: the output precision p, and a rounding mode ◦p
Output: ◦p(π

2

6
)

u←△(π)
u← N (u2)
u← N (u/6) error(u) ≤ 19

2
ulp(u)

if u can be exactly rounded according to ◦p
then return ◦p(u)
else increase working precision and restart calculation

When x ∈
]
1
2
, 1
[
, we use the relation

Li2(x) = −S(− log x)− log x log(1− x) + log2 x

4
+
π2

6

which is implemented as follows

Algorithm li2 0.5..1

Input: x with x ∈
]
1
2
, 1
[
, the output precision n, and a rounding mode ◦n

Output: ◦n(Li2(x))
l←△(− log x) error(l) ≤ ulp(l)
q ← N (−S(l)) error(q) ≤ (k + 1)21−exp(q)ulp(q)
y ← N (1− x) error(y) ≤ 1

2
ulp(y)

u←△(log y) error(u) ≤ (1 + 2−exp(v))ulp(u)
v ← N (ul) error(v) ≤ (9

2
+ 21−exp(v))ulp(v)

r ← N (q + v) error(r) ≤ 2κrulp(r)
w ← N (l2)
w ← N (u/4) error(w) ≤ 5

2
ulp(w)

s← N (r + w) error(s) ≤ 2κsulp(s)
p←△(π)
p← N (p2)
p← N (p/6) error(p) ≤ 19

2
ulp(p) ≤ 23−exp(p)ulp(p)

t← N (s+ p) error(t) ≤ 2κtulp(t)
if t can be exactly rounded according to ◦n
then return ◦n(t)
else increase working precision and restart calculation

where

κr = 2 +max(3, ⌈log2(k + 1)⌉+ 1− exp(q), 1− exp(u))

κs = 2 +max(−1, κr + exp(r)− exp(s), 2 + exp(w)− exp(s))

κt = 2 +max(−1, κs + exp(s)− exp(t), 3− exp(t))
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Near 0, we can use the relation

Li2(x) =
∞∑
n=0

xk

k2

which is true for |x| ≤ 1 [FIXME: ref]. If x ≤ 0, we have 0 ≤ Li2(x) − x ≤ x2

4
and if x is

positive, 0 ≤ Li2(x)− x ≤ (π
2

6
− 1)x2 ≤ x2 ≤ 22exp(x)+1ulp(x).

When x ∈ [−1, 0[, we use the relation

Li2(x) = −S(− log(1− x))− log2(1− x)
4

which is implemented as follows

Algorithm li2 -1..0

Input: x with x ∈]− 1, 0[, the output precision n, and a rounding mode ◦n
Output: ◦n(Li2(x))
y ← N (1− x) error(y) ≤ 1

2
ulp(y)

l←△(log y) error(l) ≤ (1 + 2−exp(l))ulp(l)
r ← N (−S(l)) error(r) ≤ (k + 1)21−exp(r)ulp(r)
u← N (−l2)
u← N (u/4) error(u) ≤ (9

2
+ 2−exp(l))ulp(u)

s← N (r + u) error(s) ≤ 2κsulp(s)
if s can be exactly rounded according to ◦n
then return ◦n(s)
else increase working precision and restart calculation

with

κs = 2 +max(3, ⌈log2(k + 1)⌉+ 1− exp(r),−exp(l))
When x is large and negative, we can use an asymptotic expansion near −∞:∣∣∣∣Li2(x) + log2(−x)

2
+
π2

3

∣∣∣∣ ≤ 1

|x|

which gives the following algorithm:

Algorithm li2 asympt neg

Input: x with x ≤ −7, the output precision n, and a rounding mode ◦n
Output: ◦n(Li2(x)) if it can round exactly, a failure indicator if not
l← N (log(−x))
f ← N (l2)
g ← N (f/2)
p← N (π)
q ← N (p2)
h← N (q/3)
s← N (g − h)
if s cannot be exactly rounded according to the given mode ◦n
then return failed
else return ◦n(s)
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When x ∈] − 7,−1[ or if the above computation cannot give exact rounding, we use the
relation

Li2(x) = S

(
log

(
1− 1

x

))
− log2(−x)

4
− log(−x) log(1− x)

2
+

log2(1− x)
4

+
π2

6

which is implemented as follows

Algorithm li2 -∞..-1

Input: x with x ∈]−∞,−1[, the output precision n, and a rounding mode ◦n
Output: ◦n(Li2(x))
y ← N (−1/x)
z ← N (1 + y)
z ← N (log z)
o← N (S(z)) error(o) ≤ (k + 1)21−exp(o)ulp(o)
y ← N (1− x)
u←△(log y) error(u) ≤ (1 + 2−exp(u))ulp(u)
v ←△(log(−x)) error(v) ≤ ulp(v)
w ← N (uv)
w ← N (w/2) error(w) ≤ (9

2
+ 1)ulp(w)

q ← N (o− w) error(q) ≤ 2κqulp(q)
v ← N (v2)
v ← N (v/4) error(v) ≤ 9

2
ulp(v)

r ← N (q − v) error(r) ≤ 2κrulp(r)
w ← N (u2)
w ← N (w/4) error(w) ≤ 17

2
ulp(w)

s← N (r + w) error(s) ≤ 2κsulp(s)
p←△(π)
p← N (p2)
p← N (p/6) error(p) ≤ 19

2
ulp(p) ≤ 23−exp(p)ulp(p)

t← N (s− p) error(t) ≤ 2κtulp(t)
if t can be exactly rounded according to ◦n
then return ◦n(t)
else increase working precision and restart calculation

where

κq = 1 +max(3, ⌈log2(k + 1)⌉+ 1− exp(q))

κr = 2 +max(−1, κq + exp(q)− exp(r), 3 + exp(v)− exp(r))

κs = 2 +max(−1, κr + exp(r)− exp(s), 3 + exp(w)− exp(s))

κt = 2 +max(−1, κs + exp(s)− exp(t), 3− exp(t))

4.32. The Digamma Function. The Digamma function mpfr digamma is defined by:

ψ(x) =
d

dx
log Γ(x),

and is computed from the asymptotic series [25]

ψ(x) ∼ log x− 1

2x
−

∞∑
n=1

B2n

2nx2n
.
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(We assume the error in the sum is bounded by the first neglected term.) Since B2n ≈
2(2n)!/(2π)−2n, the terms of the sum decrease until n ≈ πx, and then the error term is
≈ e−2πx. If x is too small with respect to the target precision, we use the formula [25]:

ψ(x+ j) =
1

x+ j − 1
+

1

x+ j − 2
+ · · ·+ 1

x
+ ψ(x),

and compute ψ(x+ j) instead with the asymptotic formula.
4.33. The Airy Function.
Warning: the current implementation is not made for large arguments. It works fine
typically for |x| ≤ 500. For larger inputs, other methods will be implemented in a close
future.

4.33.1. Definitions. The Ai function is a solution of the differential equation y′′(x) = x y(x).
It has a power series developed at 0 that is defined for each x ∈ C (we will consider only the
case x ∈ R in the following):

(9) Ai(x) =
+∞∑
i=0

ai x
i,

where the sequence ai satisfies the following recurrence:
a0 = Ai(0) = 1/(Γ(2/3) 3

√
9)

a1 = Ai′(0) = −1/(Γ(1/3) 3
√
3)

a2 = 0
∀n ≥ 0, ai+3 = ai/((i+ 2) (i+ 3)).

For each i, we define ti = ai x
i. The sequence (ti)i satisfies a similar recurrence.

We denote by C the function defined by

C(x) =
+∞∑
i=0

|ai| · |x|i.

This function is involved in the condition number of the series (9).

4.33.2. Notations. For the error analysis, we refer to classical techniques and lemmas (see
e.g. [13]). In particular, we use Stewart’s error counter: x ⟨k⟩ represents any value x̂ of the
form

x̂ = x

k∏
i=1

(1 + θi)
±1

where |θi| ≤ u = 21−p with p the current precision.
It is known that x ⟨k⟩ = x(1 + µ) where |µ| ≤ γk with γk ≤ 2ku when 2ku ≤ 1 (see [13]).
As usual, we denote by exp(x) the exponent of x (the smallest E ∈ Z such that |x| < 2E).

4.33.3. Technical results.

Fact 1. The function C satisfies the following inequalities:

(10)

{
C(x) ≤ 1 if 0 ≤ x < 1

C(x) ≤ 1
2
x−1/4 exp

(
2
3
x3/2

)
if x ≥ 1
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Fact 2. For x ∈ [1/4, 1], the following holds:{
x/Γ(x) ∈ [1/16, 1]
Γ′(x) ∈ [−16, −1/2].

So, if a = ◦(1/3) computed in precision wprec + 4, then we can write Γ(a) = Γ(1/3) ⟨1⟩ in
precision wprec (the same holds for a = ◦(2/3)).

Proof. Let α = 1/3 or α = 2/3. We suppose that a = ◦(α). So we can write a = (1 + θ)α
where |θ| ≤ 2−3−wprec, so we have

Γ(a) = Γ(α + α θ) = Γ(α) + α θΓ′(ξ),

where ξ lies between α and a. In particular, ξ ∈ [1/4, 1]. Thus

Γ(a) = Γ(α)

(
1 + θ

α

Γ(α)
Γ′(ξ)

)
= Γ(α) (1 + θ′)

with |θ′| ≤ 16|θ| ≤ 21−wprec. □

Algorithm: mpfr ai1

/* except when mentioned, the precision used is wprec */

temp← ◦(2/3) ; /* with precision wprec+ 4 */2

temp← Γ(temp);3

t0← 3
√
9;4

t0← t0 · temp;5

t0← 1/t0;6

temp← ◦(1/3) ; /* with precision wprec+ 4 */7

temp← Γ(temp);8

t1← 3
√
3;9

t1← t1 · temp;10

t1← −x/t1;11

s← t0+ t1;12

k← 2;13

while true do14

t0← t0 · x3/(k · (k+ 1));15

t1← t1 · x3/((k+ 1) · (k+ 2));16

k← k+ 3;17

s← s+ t0+ t1;18

if (exp(t0) ≤ exp(s)− prec− 3)19

and (exp(t1) ≤ exp(s)− prec− 3)20

and |x|3 ≤ k · (k+ 1)/2break;21

end22

evalErr← 4 + log2(k)− exp(s);23

if |x| ≥ 1 then evalErr← evalErr + (2/3) log2(e)x
3/2 − log2(x)/4− 1;24

correctBits← min(prec+ 1, wprec− evalErr)− 1;25
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4.33.4. Algorithm. Algorithm 1 is run to obtain an approximate value of Ai(x) with a relative
error bounded by 2−prec. Except if this is explicitly mentioned, the operations are performed
with correct rounding and with precision wprec. The link between prec and wprec will be
expressed in Section 4.33.4.

Analysis : it is clear that, while entering in the loop for the j-th time, k = 3j−1, t0 ≃ t3j−3,

t1 ≃ t3j−2 and s ≃
∑k

i=0 ti.
Let K be the value of k when exiting the loop. Hence K = 3j + 2 where j denotes the

number of times that the loop has been performed. Moreover s ≃
∑K

i=0 ti, t0 ≃ t3j, and
t1 ≃ t3j+1

Hypothesis 1. In the following, we suppose that 2 · (4K) · 21−wprec ≤ 1.

Roundoff errors. Before entering the loop, t0 = t0 ⟨4⟩ and t1 = t1 ⟨4⟩. A trivial recurrence
shows that, at the end of the j-th execution of the loop, we have t0 = t3j ⟨4 + 5j⟩ and
t1 = t3j+1 ⟨4 + 5j⟩. At the end of the j-th execution of the loop, s has been obtained by the
accumulation of 2j + 1 additions. So, when exiting the loop, all the terms of the sum have
accumulated at most 4 + 5j + 2j + 1 = 7j + 5 errors, which we conveniently bound by 4K
(remember that K = 3j + 2). So we can write

s =
K∑
k=0

tk ⟨4K⟩ .

For each k, we know that tk ⟨4K⟩ = tk(1 + µ(k)) where

|µ(k)| ≤ γ4K ≤ 2 · (4K) · 21−wprec (here we use the hypothesis 1).

Hence

s =

(
K∑
k=0

tk

)
+

(
K∑
k=0

tk µ
(k)

)
,

and we can bound the roundoff errors by∣∣∣∣∣s−
K∑
i=0

ti

∣∣∣∣∣ ≤
K∑
i=0

|ti| γ4K ≤ γ4K

+∞∑
i=0

|tk|︸ ︷︷ ︸
C(x)

≤ C(x) · (8K 21−wprec).

We remark that, by definition of evalErr and by Fact 1, we have

C(x) ≤ 2exp(s)+evalErr−4−log2(K).

So, finally ∣∣∣∣∣s−
K∑
i=0

ti

∣∣∣∣∣ ≤ 2exp(s)+evalErr−wprec.

Remark: during the algorithm t0 = t3j ⟨4 + 5j⟩, so in particular |t3j| ≤ 2|t0|. The same
remark holds for t1 and t3j+1.
Approximation error. The stopping criterion ensures that, for n ≥ K, |tn+1| ≤ |tn−2|/2.
Besides, we recall that K = 3j + 2. Thus
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∣∣∣∣∣
+∞∑

k=j+1

t3k

∣∣∣∣∣ ≤ t3j
2

+
t3j
4

+
t3j
8

+ · · · ≤ |t3j|.

Using the remark above, we can bound |t3j| by 2|t0| ≤ 21+exp(t0). The stopping criterion of
the loop ensures that exp(t0) ≤ exp(s)− prec− 3 so we conclude that∣∣∣∣∣

+∞∑
k=j+1

t3k

∣∣∣∣∣ ≤ 2exp(s)−prec−2.

Likewise, ∣∣∣∣∣
+∞∑

k=j+1

t3k+1

∣∣∣∣∣ ≤ 2exp(s)−prec−2.

From this, we deduce the following upper bound on the approximation error:∣∣∣∣∣Ai(x)−
K∑
i=0

ti

∣∣∣∣∣ ≤ 2exp(s)−prec−1.

Overall error. By definition of correctBits, we finally get

|Ai(x)− s| ≤ 2exp(s)−correctBits.

Determination of wprec. The variable prec must be chosen slightly larger than the final
target precision, in order to bypass the TMD. In practice we keep a few guard bits, which
ensures that we do not encounter bad cases too often. The Ziv’ loop is performed over prec.
We would like the roundoff errors and the approximation error to be approximately of the

same order of magnitude, i.e.

wprec = prec+ 1 + evalErr.

The value evalErr depends on exp(s) (that we do not know, a priori) and on K (idem).
We may estimate K ≃ prec (anyway, only the logarithm of this value is used, so we do not
care too much of this value) Concerning exp(s), when x ≥ 0, it is possible to rigorously
estimate it with the following inequalities. When x < 0, it is more obfuscated since Ai(x)
can be arbitrarily close to zero. I do not have any estimation yet.

Fact 3. The following inequalities hold:{
Ai(x) ≥ 1/8 if 0 ≤ x ≤ 1

Ai(x) ≥ 1
4
x−1/4 exp

(
−2

3
x3/2

)
if x ≥ 1.

These estimates are used to set the initial value of wprec. When x ≤ 0, we initially
suppose that exp(Ai(x)) ≥ −10. More precisely, we use a variable assumedExp to remember
this assumption (initially assumedExp = 10).

Representing the condition number by a variable cond, and using Fact 1 we can set{
cond = 0 if |x| ≤ 1

cond = ⌈2
3
log2(e)x

3/2⌉ − ⌊ log2(x)
4
⌋ − 1 if |x| ≥ 1.
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Using Fact 3, we can set the initial value of wprec the following way:

wprec = prec+ 1 + 4 + ⌈log2(prec)⌉+ cond+ assumedExp if x ≤ 0
wprec = prec+ 1 + 4 + ⌈log2(prec)⌉+ cond+ 3 if 0 ≤ x ≤ 1

wprec = prec+ 1 + 4 + ⌈log2(prec)⌉+ cond+ 2 + ⌈2
3
log2(e)x

3/2⌉+ ⌈ log2(x)
4
⌉ if x > 1.

When the algorithm exits the loop (line 22 of the algorithm), several cases are possible:

• correctBits can be negative: this typically happens when x ≥ 0 and the Ai(x) is
almost zero. In this case, the initial assumption that exp(Ai(x)) ≥ −presumedExp is
false and wprec was badly chosen. This is not due to a bad case in Ziv’ strategy. We
choose to double assumedExp and set the new value of wprec as

wprec = prec+ 1 + 4 + ⌈log2(k)⌉+ cond+ assumedExp;

• correctBits can be positive but smaller than prec. The cause of this phenomenon is
the same as in the previous case. However, since we have at least one correct bit, we
get an important information: s is a first approximation of Ai(x). Hence we do not
rely on assumedExp for choosing the new value of wprec:

wprec = prec+ 1 + 4 + ⌈log2(k)⌉+ cond− exp(s);

• finally, if correctBits ≥ prec but if we cannot round, it means that we really are in a
bad case of Ziv’ strategy. In this case, we update prec (according to the usual MPFR
strategy) and we recompute a new working precision from it: as in the previous case,
we can rely on exp(s). The only unknown is the new truncation rank. We assume
that it will not be multiplied by more than 4 and we set:

wprec = prec+ 1 + 4 + ⌈log2(4k)⌉+ cond− exp(s).

4.34. Radix Conversion. The mpfr get str function with size 0 and base b chooses an
output precision of 1 + ⌈e log(2)/ log(b)⌉ for a precision of e bits if b is not a power of two
[17]. However, the code uses instead 1 + ⌈ey⌉, where y is an upper 76-bit approximation of
log(2)/ log(b). When do both values differ? In the case b = 2k, the worst case is when the
first output digit contains only one significant bit, thus 1+ ⌈(e− 1) log(2)/ log(b)⌉ digits are
necessary, and also sufficient.

Let y be the 76-bit upper approximation of x = log(2)/ log(b). Both values differ when
there is an integer n such that xe ≤ n < ye, i.e., x < n/e < y. This means that n/e is a better
approximation of x than y. Let p/q be the first convergent of x such that |x−p/q| < |x−y|,
then necessarily e ≥ q.

Example: for b = 10 we have

y =
45490366779583341627641

277
,

with |x − y| ≈ 0.3 · 2−23. The first convergent such that |x − p/q| < |x − y| is p/q =
174131244785/578451474249, and thus for e < 578451474249 the formula 1+⌈ex⌉ is correct.
In fact for e = 578451474249 it is exact too, since p/q < x. To improve the bound we can
consider semi-convergents (pk−1+apk)/(qk−1+aqk) with a = 1, 2, . . ., where pk/qk = p/q here.
In this example this gives the bound e < 1074541795081 for a = 1. We get the following
bounds (for powers of two there is no error), checked independently by Mark Dickinson:
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3, 975675645481 21, 500866275153 37, 1412595553751 52, 4234025992181
5, 751072483167 22, 1148143737877 38, 2296403499681 53, 1114714558973
6, 880248760192 23, 2963487537029 39, 227010038198 54, 653230957562
7, 186564318007 24, 930741237529 40, 3574908346547 55, 1113846215983
9, 1951351290962 25, 751072483167 41, 458909109357 56, 385930970803
10, 1074541795081 26, 1973399062219 42, 1385773590791 57, 676124411642
11, 890679595344 27, 1193652440098 43, 945885487008 58, 330079387370
12, 727742578896 28, 319475419871 44, 1405607880410 59, 276902299279
13, 1553566199646 29, 1645653531910 45, 421759749499 60, 2304608467893
14, 253019868939 30, 1190119072066 46, 376795094250 61, 1364503143363
15, 947578699731 31, 2605117443408 47, 1352868311988 62, 414481628603
17, 628204683310 33, 1138749817330 48, 1133739896162
18, 2280193268258 34, 1611724268329 49, 186564318007
19, 2290706306707 35, 820222240621 50, 842842574535
20, 645428387961 36, 1760497520384 51, 1435927298893

The smallest bound is e = 186564318007 for b = 7 and b = 49.

4.35. Summary. Table 1 presents the generic error for several operations, assuming all
variables have a mantissa of p bits, and no overflow/underflow occurs. The inputs u and
v are approximations of x and y with |u − x| ≤ kuulp(u) and |v − y| ≤ kvulp(v). The
additional rounding error cw is 1/2 for rounding to nearest, and 1 otherwise. The value c±u
equals 1± ku21−p.

w err(w)/ulp(w) ≤ cw + . . . special case

◦(u+ v) ku2
eu−ew + kv2

ev−ew ku + kv if uv ≥ 0
◦(u · v) (1 + c+u )ku + (1 + c+v )kv 2ku + 2kv if u ≥ x, v ≥ y
◦(1/v) 4kv 2kv if v ≤ y
◦(u/v) 4ku + 4kv 2ku + 2kv if v ≤ y

◦(
√
u) 2ku/(1 +

√
c−u ) ku if u ≤ x

◦(eu) eku2
eu−p

2eu+1ku 2eu+1ku if u ≥ x
◦(log u) ku2

1−ew

Table 1. Generic error

Remark : in the addition case, when uv > 0, necessarily one of 2eu−ew and 2ev−ew is less
than 1/2, thus err(w)/ulp(w) ≤ cw +max(ku + kv/2, ku/2 + kv) ≤ cw + 3

2
max(ku, kv).

5. Mathematical constants

5.1. The constant π. The computation of π uses the Brent-Salamin formula

π =
µ2

D
,

where µ = AGM( 1√
2
, 1) is the common limit of the sequences a0 = 1, b0 = 1√

2
, ak+1 =

(ak + bk)/2, bk+1 =
√
akbk, D = 1

4
−
∑∞

k=1 2
k−1(a2k − b2k). This formula can be evaluated

efficiently as shown in [23], starting from a0 = A0 = 1, B0 = 1/2, D0 = 1/4, where Ak and
Bk represent respectively a2k and b2k (see [2] for a formal proof of the error analysis):
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Sk+1 ← (Ak +Bk)/4
bk ←

√
Bk

ak+1 ← (ak + bk)/2
Ak+1 ← a2k
Bk+1 ← 2(Ak+1 − Sk+1)
Dk+1 ← Dk − 2k(Ak+1 −Bk+1)

For each variable x approximation a true value x̃, denote by ϵ(x) the exponent of the maximal
error, i.e. x = x̃(1± δ)e with |e| ≤ ϵ(x), and δ = 2−p for precision p (we assume all roundings
to nearest). We can prove by an easy induction that ϵ(ak) = 3 · 2k−1 − 1, for k ≥ 1,
ϵ(Ak) = 3 · 2k − 1, ϵ(Bk) = 6 · 2k − 6. Thus the relative error on Bk is at most 12 · 2k−p, —
assuming 12 · 2k−p ≤ 1 — which is at most 12 · 2kulp(Bk), since 1/2 ≤ Bk.
If we stop when |Ak−Bk| ≤ 2k−p where p is the working precision, then |µ2−Bk| ≤ 13·2k−p.

The error on D is bounded by
∑k

j=0 2
j(6 ·2k−p+12 ·2k−p) ≤ 6 ·22k−p+2, which gives a relative

error less than 22k−p+7 since Dk ≥ 3/16.

Thus we have π = Bk(1+ϵ)
D(1+ϵ′)

with |ϵ| ≤ 13 ·2k−p and |ϵ′| ≤ 22k−p+7. This gives π = Bk

D
(1+ ϵ′′)

with |ϵ′′| ≤ 2ϵ+ ϵ′ ≤ (26 + 2k+7)2k−p ≤ 22k−p+8, assuming |ϵ′| ≤ 1.

5.2. Euler’s constant. Euler’s constant is computed using the formula γ = S(n)−R(n)−
log n where:

S(n) =
∞∑
k=1

nk(−1)k−1

k!k
, R(n) =

∫ ∞

n

exp(−u)
u

du ∼ exp(−n)
n

∞∑
k=0

k!

(−n)k
.

This identity is attributed to Sweeney by Brent [5]. (See also [25].) We have S(n) =2

F2(1, 1; 2, 2;−n) and R(n) = Ei(1, n).

Evaluation of S(n). As in [5], let α ∼ 4.319136566 the positive root of α + 2 = α logα,
and N = ⌈αn⌉. We approximate S(n) by

S ′(n) =
N∑
k=1

nk(−1)k−1

k!k
.

The remainder term S(n)− S ′(n) is bounded by:

|S(n)− S ′(n)| ≤
∞∑

k=N+1

nk

k!
.

Since k! ≥ (k/e)k, and k ≥ N + 1 ≥ αn, we have:

|S(n)− S ′(n)| ≤
∞∑

k=N+1

(ne
k

)k
≤

∞∑
k=N+1

( e
α

)k
≤ 2

( e
α

)N
≤ 2e−2n

since (e/α)α = e−2.
To approximate S ′(n), we use the binary splitting method, which computes integers T

and Q such that S ′(n) = T
Q
exactly, then we compute t = ◦(T ), and s = ◦(t/Q), both with

rounding to nearest. If the working precision is w, we have t = T (1+θ1) and s = t/Q(1+θ2)
where |θi| ≤ 2−w. If follows s = T/Q(1 + θ1)(1 + θ2), thus the error on s is less than 3 ulps,
since (1 + 2−w)2 ≤ 1 + 3 · 2−w.
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Evaluation of R(n). We estimate R(n) using the terms up to k = n− 2, again as in [5]:

R′(n) =
e−n

n

n−2∑
k=0

k!

(−n)k
.

Let us introduce Ik =
∫∞
n

e−u

uk du. We have R(n) = I1 and the recurrence Ik = e−n

nk − kIk+1,
which gives

R(n) =
e−n

n

n−2∑
k=0

k!

(−n)k
+ (−1)n−1(n− 1)!In.

Bounding n! by (n/e)n
√

2π(n+ 1) which holds3 for n ≥ 1, we have:

|R(n)−R′(n)| = (n− 1)!In ≤
n!

n

∫ ∞

n

e−n

un
du ≤ nn−1

en

√
2π(n+ 1)

e−n

(n− 1)nn−1

and since
√
2π(n+ 1)/(n− 1) ≤ 1 for n ≥ 9:

|R(n)−R′(n)| ≤ e−2n for n ≥ 9.

Thus we have:

|γ − S ′(n)−R′(n)− log n| ≤ 3e−2n for n ≥ 9.

To approximate R′(n), we use the following:

m← prec(x)− ⌊ n
log 2
⌋

a← 2m

s← 1
for k from 1 to n do
a← ⌊ka

n
⌋

s← s+ (−1)ka
t← ⌊s/n⌋
x← t/2m

return r = e−nx

The absolute error ϵk on a at step k satisfies ϵk ≤ 1 + k/nϵk−1 with ϵ0 = 0. As k/n ≤ 1, we
have ϵk ≤ k, whence the error on s is bounded by n(n+1)/2, and that on t by 1+(n+1)/2 ≤
n+1 since n ≥ 1. The operation x← t/2m is exact as soon as prec(x) is large enough, thus
the error on x is at most (n+ 1) en

2prec(x)
. If e−n is computed with m bits, then the error on it

is at most e−n21−m. The error on r is then (n+ 1+ 2/n)2−prec(x) + ulp(r). Since x ≥ 2
3
n for

n ≥ 2, and x2−prec(x) < ulp(x), this gives an error bounded by ulp(r)+(n+1+2/n) 3
2n
ulp(r) ≤

4ulp(r) for n ≥ 2 — if prec(x) = prec(r). Now since r ≤ e−n

n
≤ 1

8
, that error is less than

ulp(1/2).

Final computation. We use the formula γ = S(n) − R(n) − log n with n such that
e−2n ≤ ulp(1/2) = 2−prec, i.e. n ≥ prec log 2

2
:

3Formula 6.1.38 from [1] gives x! =
√
2πxx+1/2e−x+ θ

12x for x > 0 and 0 < θ < 1. Using it for x ≥ 1, we
have 0 < θ

6x < 1, and et < 1 + 2t for 0 < t < 1, thus (x!)2 ≤ 2πx2xe−2x(x+ 1
3 ).
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s← S ′(n)
ℓ← log(n)
r ← R′(n)
return (s− ℓ)− r

Since the final result is in [1
2
, 1], and R′(n) ≤ e−n

n
, then S ′(n) approximates log n. If the

target precision is m, and we use m + ⌈log2(prec)⌉ bits to evaluate s and ℓ, then the error
on s − ℓ will be at most 3ulp(1/2), so the error on (s − ℓ) − r is at most 5ulp(1/2), and
adding the 3e−2n truncation error, we get a bound of 8ulp(1/2). [FIXME: check with
new method to compute S]

5.2.1. A faster formula. Brent and McMillan give in [6] a faster algorithm (B2) using the
modified Bessel functions, which was used by Gourdon and Demichel to compute 108,000,000
digits of γ in October 1999:

γ =
S0 −K0

I0
− log n,

where S0 =
∑∞

k=1
n2k

(k!)2
Hk, Hk = 1 + 1

2
+ · · · + 1

k
being the k-th harmonic number, K0 =√

π
4n
e−2n

∑∞
k=0(−1)k

[(2k)!]2

(k!)3(64n)k
, and I0 =

∑∞
k=0

n2k

(k!)2
.

We have I0 ≥ e2n√
4πn

(see [6] page 306). From the remark following formula 9.7.2 of [1], the

remainder in the truncated expansion for K0 up to k does not exceed the (k + 1)-th term,

whence K0 ≤
√

π
4n
e−2n and K0

I0
≤ πe−4n as in formula (5) of [6]. Let I ′0 =

∑K−1
k=0

n2k

(k!)2
with

K = ⌈βn⌉, and β is the root of β(log β − 1) = 3 (β ∼ 4.971 . . .) then

|I0 − I ′0| ≤
β

2π(β2 − 1)

e−6n

n
.

Let K ′
0 =

√
π
4n
e−2n

∑4n−1
k=0 (−1)k [(2k)!]2

(k!)3(64n)k
, then bounding by the next term:

|K0 −K ′
0| ≤

(8n+ 1)

16
√
2n

e−6n

n
≤ 1

2

e−6n

n
.

We get from this ∣∣∣∣K0

I0
− K ′

0

I ′0

∣∣∣∣ ≤ 1

2I0

e−6n

n
≤
√
π

n
e−8n.

Let S ′
0 =

∑K−1
k=1

n2k

(k!)2
Hk, then using Hk+1

Hk
≤ k+1

k
and the same bound K than for I ′0 (4n ≤

K ≤ 5n), we get:

|S0 − S ′
0| ≤

β

2π(β2 − 1)
Hk

e−6n

n
.

We deduce: ∣∣∣∣S0

I0
− S ′

0

I ′0

∣∣∣∣ ≤ e−8nHK

√
4πn

π(β2 − 1)

β

n
≤ e−8n.

Hence we have ∣∣∣∣γ − (S ′
0 −K ′

0

I ′0
− log n

)∣∣∣∣ ≤ (1 +

√
π

n
)e−8n ≤ 3e−8n.
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5.3. The log 2 constant. This constant is used in the exponential function, and in the base
2 exponential and logarithm.

We use the following formula (formula (30) from [11]):

log 2 =
3

4

∑
n≥0

(−1)n n!2

2n(2n+ 1)!
.

Let w be the working precision. We take N = ⌊w/3⌋+ 1, and evaluate exactly using binary
spitting:

T

Q
=

3

4

N−1∑
n≥0

(−1)n n!2

2n(2n+ 1)!
,

where T and Q are integers. Since the series has alternating signs with decreasing absolute
values, the truncating error is bounded by the first neglected term, which is less than 2−3N−1

for N ≥ 2; since N ≥ (w + 1)/3, this error is bounded by 2−w−2.
We then use the following algorithm:

t← ◦(T ) [rounded to nearest]
q ← ◦(Q) [rounded to nearest]
x← ◦(t/q) [rounded to nearest]

Using Higham’s notation, we write t = T (1 + θ1), q = Q(1 + θ2), x = t/q(1 + θ3) with
|θi| ≤ 2−w. We thus have x = T/Q(1 + θ)3 with |θ| ≤ 2−w. Since T/Q ≤ 1, the total
absolute error on x is thus bounded by 3|θ|+ 3θ2 + |θ|3 + 2−w−2 < 2−w+2 as long as w ≥ 3.

5.4. Catalan’s constant. Catalan’s constant is defined by

G =
∞∑
k=0

(−1)k

(2k + 1)2
.

We compute it using formula (31) of Victor Adamchik’s document “33 representations for
Catalan’s constant”4:

G =
π

8
log(2 +

√
3) +

3

8

∞∑
k=0

(k!)2

(2k)!(2k + 1)2
.

Let f(k) = (k!)2

(2k)!(2k+1)2
, and S(0, K) =

∑K−1
k=0 f(k), and S = S(0,∞). We compute S(0, K)

exactly by binary splitting. Since f(k)/f(k − 1) = k(2k−1)
2(2k+1)2

≤ 1/4, the truncation error on

S is bounded by 4/3f(K) ≤ 4/3 · 4−K . Since S is multiplied by 3/8, the corresponding
contribution to the absolute error on G is 2−2K−1. As long as 2K + 1 is greater or equal to
the working precision w, this truncation error is less than one ulp of the final result.

K ← ⌈w−1
2
⌉

T/Q← S(0, K) [exact, rational]
T ← 3T [exact, integer]
t← ◦(T ) [up]
q ← ◦(Q) [down]
s← ◦(t/q) [nearest]

4https://web.archive.org/web/20090624123133/http://www-2.cs.cmu.edu/~adamchik/articles/

catalan/catalan.htm
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x← ◦(
√
3) [up]

y ← ◦(2 + x) [up]
z ← ◦(log y) [up]
u← ◦(π) [up]
v ← ◦(uz) [nearest]
g ← ◦(v + s) [nearest]
Return g/8 [exact].

The error on t and q is less than one ulp; using the generic error on the division, since t ≥ T
and q ≤ Q, the error on s is at most 9/2 ulps.

The error on x is at most 1 ulp; since 1 < x < 2 — assuming w ≥ 2 —, ulp(x) = 1/2ulp(y),
thus the error on y is at most 3/2ulp(y). The generic error on the logarithm (§2.9) gives
an error bound of 1 + 3

2
· 22−exp(z) = 4 ulps for z (since 3 ≤ y < 4, we have 1 ≤ z < 2,

so exp(z) = 1). The error on u is at most 1 ulp; thus using the generic error on the
multiplication, since both u and z are upper approximations, the error on v is at most 11
ulps. Finally that on g is at most 11 + 9/2 = 31/2 ulps. Taking into account the truncation
error, this gives 33/2 ulps.
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